EI、Scopus 收录
中文核心期刊
Li Xiang, Zhang Chongwei, Ning Dezhi, Su Peng. NONLINEAR NUMERICAL STUDY OF NON-PERIODIC WAVES ACTING ON A VERTICAL CLIFF[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1042-1049. DOI: 10.6052/0459-1879-16-337
Citation: Li Xiang, Zhang Chongwei, Ning Dezhi, Su Peng. NONLINEAR NUMERICAL STUDY OF NON-PERIODIC WAVES ACTING ON A VERTICAL CLIFF[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1042-1049. DOI: 10.6052/0459-1879-16-337

NONLINEAR NUMERICAL STUDY OF NON-PERIODIC WAVES ACTING ON A VERTICAL CLIFF

  • Received Date: November 19, 2016
  • Available Online: July 20, 2017
  • In this study, a 2D fully-nonlinear numerical wave tank is developed based on the time-domain higher-order boundary element method. Non-periodic waves acting on a vertical cliff are investigated. The fully nonlinear kinematic and dynamic boundary conditions are satisfied on the instantaneous free surface. The mixed Eulerian-Lagrangian method is adopted to track the transient water particle on the free surface and the fourth order Runge-Kutta method is used to predict the velocity potential and wave elevation on the free surface. Then the acceleration potential technique is adopted to calculate the temporal derivative of the potential on the vertical wall surface, and transient wave loads are obtained by integrating the Bernoulli equation along the wetted wall surface. The obtained nonlinear results are firstly compared with solutions of the Serre-Green-Naghdi (SGN) theory. It is observed that, for the highly nonlinear case of double-incidentwaves, the SGN model which only satisfies the weak dispersion relationship greatly underestimates the maximum wave run-up (MWR). Then, the nonlinear interaction between double-incident-waves and a vertical cliff is further studied. It is found that the linear prediction also underestimates the MWR. The nonlinearity not only leads to an evident increase of the MWR, but also results in a high-frequency oscillation of the free surface. During this process, nonlinear properties of wave loads are similar to those of the wave run-up. Finally, spectral analysis is performed on histories of wave run-up and wave loads. The dominant frequency wave component is found to transfer its energy to higher frequency components, as a typical nonlinear wave-wave interaction phenomenon.
  • [1]
    张新曙, 胡晓峰, 尤云祥等.深海多立柱浮式平台涡激运动特性研究.力学学报, 2016, 48(3):593-598 http://lxxb.cstam.org.cn/CN/abstract/abstract145766.shtml

    Zhang Xinshu, Hu Xiaofeng, You Yunxiang, et al. Investigation on the characteristics of vortex induced motion of a deep sea muti-column floating platform. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3):593-598 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145766.shtml
    [2]
    赵海峰, 石俊, 王斌斌.海上浮油定位浮标的力学分析与尺寸优化.力学学报, 2016, 48(1):235-242 doi: 10.6052/0459-1879-15-147

    Zhao Haifeng, Shi Jun, Wang Binbin. Mechanical analysis and sizing optimization of offshore oil slick tracking buoy. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):235-242 (in Chinese) doi: 10.6052/0459-1879-15-147
    [3]
    徐道临, 卢超, 张海成.海上浮动机场动力学建模及非线性动力响应特性.力学学报, 2015, 47(2):289-300 doi: 10.6052/0459-1879-14-138

    Xu Daolin, Lu Chao, Zhang Haicheng. Dynamic modeling and nonlinear characteristics of floating airport. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2):289-300 (in Chinese) doi: 10.6052/0459-1879-14-138
    [4]
    Isaacson M, Cheung KF. Second order wave diffraction around twodimensional bodies by time-domain method. Applied Ocean Research, 1991, 13(4):175-186 doi: 10.1016/S0141-1187(05)80073-2
    [5]
    Grilli ST, Guyenne P, Dias F. A fully non-linear model for threedimensional overturning waves over an arbitrary bottom. International Journal for Numerical Methods in Fluids, 2001, 35(7):829-867 doi: 10.1002/(ISSN)1097-0363
    [6]
    Jamois E, Fuhrman DR, Bingham HB, et al. A numerical study of nonlinear wave run-up on a vertical plate. Coastal Engineering, 2006, 53(11):929-945 doi: 10.1016/j.coastaleng.2006.06.004
    [7]
    Fuhrman DR, Madsen PA. Simulation of nonlinear wave run-up with a high-order Boussinesq model. Coastal Engineering, 2008, 55(2):139-154 doi: 10.1016/j.coastaleng.2007.09.006
    [8]
    Pelinovsky E, Kharif C, Talipova T. Large-amplitude long wave interaction with a vertical wall. European Journal of MechanicsB/Fluids, 2008, 27(4):409-418 http://www.sciencedirect.com/science/article/pii/S0997754607000696
    [9]
    孙英伟. 直立堤前的破碎波流场特征及波浪力研究. [博士论文]. 大连: 大连理工大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10141-1013197966.htm

    Sun Yingwei. A study of breaking wave flow field in front of the vertical breakwater and wave force.[PhD Thesis]. Dalian:Dalian University of Technology, 2012(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10141-1013197966.htm
    [10]
    Chatjigeorgiou IK, Molin B. Third-order interactions, wave run-up and hydrodynamic loading on a vertical plate in an infinite wave field. Applied Ocean Research, 2013, 41:57-64 doi: 10.1016/j.apor.2013.03.001
    [11]
    Su CH, Mirie RM. On head-on collision between two solitary waves. Journal of Fluid Mechanics, 1980, 98:509-525 doi: 10.1017/S0022112080000262
    [12]
    Fenton JD, Rienecker MM. A Fourier method for solving nonlinear water-wave problems:Application to solitary-wave interactions. Journal of Fluid Mechanics, 1982, 118:411-443 doi: 10.1017/S0022112082001141
    [13]
    Kim SK, Liu PLF, Liggett JA. Boundary integral equation solutions for solitary wave generation, propagation and run-up. Coastal Engineering, 1983, 7(4):299-317 doi: 10.1016/0378-3839(83)90001-7
    [14]
    Power H, Chwang AT. On reflection of a planar solitary wave at a vertical wall. Wave Motion, 1984, 6(2):183-195 doi: 10.1016/0165-2125(84)90014-3
    [15]
    Cooker MJ, Weidman PD, Bale DS. Reflection of a high-amplitude solitary wave at a vertical wall. Journal of Fluid Mechanics, 1997, 342(1):141-158 http://adsabs.harvard.edu/abs/1997JFM...342..141C
    [16]
    Maiti S, Sen D. Computation of solitary waves during propagation and runup on a slope. Ocean Engineering, 1999, 26(11):1063-1083 doi: 10.1016/S0029-8018(98)00060-2
    [17]
    Liu PLF, Al-Banaa K. Solitary wave runup and force on a vertical barrier. Journal of Fluid Mechanics, 2004, 505:225-233 doi: 10.1017/S0022112004008547
    [18]
    Jian W, Sim SY, Huang Z, et al. Modelling of solitary wave runup on an onshore coastal cliff by smoothed particle hydrodynamics method. Procedia Engineering, 2015, 116:88-96 doi: 10.1016/j.proeng.2015.08.268
    [19]
    Park H, Cox DT. Empirical wave run-up formula for wave, storm surge and berm width. Coastal Engineering, 2015, 115:67-78 http://www.sciencedirect.com/science/article/pii/S0378383915001830
    [20]
    Chambarel J, Kharif C, Touboul J. Head-on collision of two solitary waves and residual falling jet formation. Nonlinear Processes in Geophysics, 2009, 16:111-122 doi: 10.5194/npg-16-111-2009
    [21]
    宣瑞韬, 吴卫, 刘桦等.双孤立波直墙爬高的实验研究.水动力学研究与进展A辑, 2013, 03:241-251 http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201303002.htm

    Xuan Ruitao, Wu Wei, Liu Ye, et al. An experimental study on run-up of double solitary waves against a vertical wall. Chinese Journal of Hydrodynamics A, 2013, 03:241-251 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ201303002.htm
    [22]
    Carbone F, Dutykh D, Dudley JM, et al. Extreme wave runup on a vertical cliff. Geophysical Research Letters, 2013, 40(12):3138-3143 doi: 10.1002/grl.50637
    [23]
    Green AE, Laws N, Naghdi PM. On the theory of water waves//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences. The Royal Society, 1974, 338:43-55
    [24]
    Green AE, Naghdi PM. A derivation of equations for wave propagation in water of variable depth. Journal of Fluid Mechanics, 1976, 78:237-246 doi: 10.1017/S0022112076002425
    [25]
    Zhao BB, Ertekin RC, Duan WY. A comparative study of diffraction of shallow-water waves by high-level IGN and GN Equations. Journal of Computational Physics, 2015, 283:129-147 doi: 10.1016/j.jcp.2014.11.020
    [26]
    Zhao BB, Duan WY, Ertekin RC. Application of higher-level GN theory to some wave transformation problems. Coastal Engineering, 2014, 83:177-189 doi: 10.1016/j.coastaleng.2013.10.010
    [27]
    Ning D, Teng B, Zhao H, et al. A comparison of two methods for calculating solid angle coefficients in a BIEM numerical wave tank. Engineering Analysis with Boundary Elements, 2010, 34(1):92-96 doi: 10.1016/j.enganabound.2009.06.009
    [28]
    Ning D. Zhuo X, Teng B. Focused waves interaction with a vertical wall//Twenty-third (2013) International Offshore and Polar Engineering, Alaska, USA, June 30-July 5, 2013
  • Related Articles

    [1]Hua Fenfei, Luo Tong, Lei Jian, Liu Dabiao. STUDY OF CONFINED LAYER PLASTICITY BASED ON HIGHER-ORDER STRAIN GRADIENT PLASTICITY THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 399-408. DOI: 10.6052/0459-1879-23-318
    [2]Zhang Dongjian, Zheng Xitao, Yan Leilei, Lu Tuo, Xu Jianhui, Zhang Cong. FINITE ELEMENT MODEL FOR BUCKLING OF STIFFENED COMPOSITE SANDWICH STRUCTURES BASED ON HIGHER-ORDER THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1686-1698. DOI: 10.6052/0459-1879-23-114
    [3]Wang Zhan, Zhu Yuke. THEORY, MODELLING AND COMPUTATION OF NONLINEAR OCEAN INTERNAL WAVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1589-1604. DOI: 10.6052/0459-1879-19-326
    [4]Shen Zhiqiang, Xia Jun, Song Dianyi, Cheng Pan. A QUADRILATERAL QUADRATURE PLATE ELEMENT BASED ON REDDY'S HIGHER-ORDER SHEAR DEFORMATION THEORY AND ITS APPLICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1093-1103. DOI: 10.6052/0459-1879-18-225
    [5]Duan Tiecheng, Li Luxian. STUDY ON HIGHER-ORDER SHEAR DEFORMATION THEORIES OF THICK-PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1096-1113. DOI: 10.6052/0459-1879-16-120
    [6]Chen Ling, Shen Jiping, Li Cheng, Liu Xinpei. GRADIENT TYPE OF NONLOCAL HIGHER-ORDER BEAM THEORY AND NEW SOLUTION METHODOLOGY OF NONLOCAL BENDING DEFLECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 127-134. DOI: 10.6052/0459-1879-15-170
    [7]Zhao Rujiang. THIRD-ORDER GENERALISED BEAM THEORY AND CALCULATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 987-993. DOI: 10.6052/0459-1879-14-033
    [8]Jie Zhao, Wanji Chen, Bin Ji. A study on the two second-order strain gradient theories[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 138-145. DOI: 10.6052/0459-1879-2010-1-2008-517
    [9]Transient Disturbance In A Half-Space Due To Moving Line Heat Source Using Thermoelasticity Without Energy Dissipation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3): 342-347. DOI: 10.6052/0459-1879-2004-3-2003-147
    [10]TIME DOMAIN BEM FOR WAVE PROPAGATION PROBLEMS IN ANISOTROPIC MEDIA AND ITS EXPERIMENTAL VERIFICATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(6): 728-736. DOI: 10.6052/0459-1879-1998-6-1995-183
  • Cited by

    Periodical cited type(5)

    1. 聂隆锋,赵西增,张志杭,童晨奕,王辰. 基于VPM-THINC/QQ模型的波浪高保真模拟. 力学学报. 2019(04): 1043-1053 . 本站查看
    2. 张崇伟,宁德志. 基于时域解耦算法的多液舱浮式结构物运动模拟. 力学学报. 2019(06): 1650-1665 . 本站查看
    3. 王千,刘桦,房詠柳,邵奇. 孤立波与淹没平板相互作用的三维波面和水动力实验研究. 力学学报. 2019(06): 1605-1613 . 本站查看
    4. 李翔,宁德志. 长波波列传播特性的模拟研究. 水动力学研究与进展(A辑). 2018(06): 714-719 .
    5. 宁德志,李翔,张崇伟. 聚焦波群对出水截断结构作用的非线性数值模拟(英文). Journal of Marine Science and Application. 2018(03): 362-370 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1331) PDF downloads (477) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return