EI、Scopus 收录
中文核心期刊
Hu Ran, Chen Yifeng, Wan Jiamin, Zhou Chuangbing. SUPERCRITICAL CO2 WATER DISPLACEMENTS AND CO2 CAPILLARY TRAPPING: MICROMODEL EXPERIMENT AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 638-648. DOI: 10.6052/0459-1879-16-237
Citation: Hu Ran, Chen Yifeng, Wan Jiamin, Zhou Chuangbing. SUPERCRITICAL CO2 WATER DISPLACEMENTS AND CO2 CAPILLARY TRAPPING: MICROMODEL EXPERIMENT AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 638-648. DOI: 10.6052/0459-1879-16-237

SUPERCRITICAL CO2 WATER DISPLACEMENTS AND CO2 CAPILLARY TRAPPING: MICROMODEL EXPERIMENT AND NUMERICAL SIMULATION

  • Received Date: August 25, 2016
  • Available Online: February 14, 2017
  • The CO2 capillary trapping is an important scientific issue in geological carbon sequestration, but few researches focus on the trapping mechanism at pore scale under supercritical CO2 condition. In this study, based on the high-pressure fluids-microscopy-micromodel experimental system, we performed drainage experiment, i.e. supercritical CO2 displacing water, and imbibition experiment, i.e. water displacing CO2, under the conditions of 45℃ and 8.5 MPa. The DSLR camera was used to capture pictures of CO2-water two-phase immiscible flow and the microscopy was used to capture the capillary trapping behavior for the supercritical CO2 at the pore scale. The computational fluid dynamic method was adopted to simulate the two-phase fluid flow processes. The numerical results are generally in agree-ment with the experimental observations, and further provide three-dimensional geometries on the interface during the drainage-imbibition processes and the trapped supercritical CO2 droplet/cluster. Finally, the capillary trapping curve, i.e. the relationship between the initial CO2 saturation and the residual saturation, was obtained from the numerical results, and we made an assessment of the three capillary trapping models, i.e. Land's, Jurauld's and Spiteri's trapping models. A comparison of the models performance indicates that Jurauld's model behaves slightly better than Land's model, whereas Spiteri's model behaves poorly. However, given that Land's model only contains one parameter of clear physical meaning, it is recommended for practical use.
  • [1]
    Zhang W, Li Y, Xu T, et al. Long-term variations of CO2 trapped in different mechanisms in deep saline formations:a case study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 2009, 3(2):161-180 doi: 10.1016/j.ijggc.2008.07.007
    [2]
    Metz B, Davidson O, De Coninck H, et al. IPCC special report on carbon dioxide capture and storage. Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change. IPCC, Cambridge, United Kingdom and New York, USA:Cambridge University Press, 2005
    [3]
    李小春, 刘延锋, 白冰等.中国深部咸水含水层CO2储存优先区域选择.岩石力学与工程学报, 2006, 25(5):963-968

    Li Xiaochun, Liu Yanfeng, Bai Bing, et al. Ranking and screening of CO2 Saline aquifer storage zones in China. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5):963-968 (in Chinese)
    [4]
    李小春, 方志明, 魏宁等.我国CO2捕集与封存的技术路线探讨.岩土力学, 2009, 30(9):2674-2678 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx200909026&dbname=CJFD&dbcode=CJFQ

    Li Xiaochun, Fang Zhiming, Wei Ning, et al. Discussion on technical roadmap of CO2 capture and storage in China. Rock and Soil Mechanics, 2009, 30(9):2674-2678 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx200909026&dbname=CJFD&dbcode=CJFQ
    [5]
    Suekane T, Nobuso T, Hirai S, et al. Geological storage of carbon dioxide by residual gas and solubility trapping. International Journal of Greenhouse Gas Control, 2008, 2(1):58-64 doi: 10.1016/S1750-5836(07)00096-5
    [6]
    Al Mansoori SK, Itsekiri E, Iglauer S, et al. Measurements of nonwetting phase trapping applied to carbon dioxide storage. International Journal of Greenhouse Gas Control, 2010, 4(2):283-288 doi: 10.1016/j.ijggc.2009.09.013
    [7]
    Tanino Y, Blunt M. Laboratory investigation of capillary trapping under mixed-wet conditions. Water Resources Research, 2013, 49(7):4311-4319 doi: 10.1002/wrcr.20344
    [8]
    Al-Raoush RI. Impact of wettability on pore-scale characteristics of residual nonaqueous phase liquids. Environmental Science & Technology, 2009, 43(14):4796-4801 https://www.ncbi.nlm.nih.gov/pubmed/19673267
    [9]
    Iglauer S, Pentland C, Busch A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research, 2015, 51(11):729-774 https://espace.curtin.edu.au/handle/20.500.11937/20032
    [10]
    Chaudhary K, Bayani Cardenas M, Wolfe WW, et al. Pore-scale trapping of supercritical CO2 and the role of grain wettability and shape. Geophysical Research Letters, 2013, 40(15):3878-3882 doi: 10.1002/grl.50658
    [11]
    Tanino Y, Blunt MJ. Capillary trapping in sandstones and carbonates:Dependence on pore structure. Water Resources Research, 2012, 48(8):W08525 doi: 10.1029/2011WR011712/full#footer-citing
    [12]
    Moura M, Fiorentino EA, Måløy K, et al. Impact of sample geometry on the measurement of pressure-saturation curves:Experiments and simulations. Water Resources Research, 2015, 51(12):8900-8926
    [13]
    Kimbrel EH, Herring AL, Armstrong RT, et al. Experimental characterization of nonwetting phase trapping and implications for geologic CO2 sequestration. International Journal of Greenhouse Gas Control, 2015, 42:1-15 doi: 10.1016/j.ijggc.2015.07.011
    [14]
    Chatzis I, Kuntamukkula M, Morrow N. Effect of capillary number on the microstructure of residual oil in strongly water-wet sandstones. SPE Reservoir Engineering, 1988, 3(3):902-912 doi: 10.2118/13213-PA
    [15]
    El-Maghraby RM, Blunt MJ. Residual CO2 trapping in Indiana limestone. Environmental Science & Technology, 2012, 47(1):227-233
    [16]
    Andrew M, Bijeljic B, Blunt MJ. Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. International Journal of Greenhouse Gas Control, 2014, 22:1-14 doi: 10.1016/j.ijggc.2013.12.018
    [17]
    Niu B, Al-Menhali A, Krevor SC. The impact of reservoir conditions on the residual trapping of carbon dioxide in Berea sandstone. Water Resources Research, 2015, 51(4):2009-2029 doi: 10.1002/2014WR016441
    [18]
    Zhang C, Oostrom M, Grate JW, et al. Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Environmental Science & Technology, 2011, 45(17):7581-7588 https://www.ncbi.nlm.nih.gov/pubmed/21774502
    [19]
    Wang Y, Zhang C, Wei N, et al. Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network. Environmental Science & Technology, 2012, 47(1):212-218
    [20]
    Lenormand R, Touboul E, Zarcone C. Numerical models and experiments on immiscible displacements in porous media. Journal Of Fluid Mechanics, 1988, 189:165-187 doi: 10.1017/S0022112088000953
    [21]
    Andrew M, Bijeljic B, Blunt MJ. Pore-scale imaging of geological carbon dioxide storage under in situ conditions. Geophysical Research Letters, 2013, 40(15):3915-3918 doi: 10.1002/grl.50771
    [22]
    武爱兵, 李铱, 常春等.不同成分盐水驱CO2.现代地质, 2014, 28(5):1061-1067 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201405024&dbname=CJFD&dbcode=CJFQ

    Wu Aibing, Li Yi, Chang Chun, et al. The residual gas saturation of different components of saline flooding CO2. Geoscience, 2014, 28(5):1061-1067 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201405024&dbname=CJFD&dbcode=CJFQ
    [23]
    Kim Y, Wan J, Kneafsey TJ, et al. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine:pore-scale studies in micromodels. Environmental Science & Technology, 2012, 46(8):4228-4235 http://www.ncbi.nlm.nih.gov/pubmed/22404561
    [24]
    Chang C, Zhou Q, Kneafsey TJ, et al. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions. Advances in Water Resources, 2016, 92:142-158 doi: 10.1016/j.advwatres.2016.03.015
    [25]
    Chang C, Zhou Q, Oostrom M, et al. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions. Advances in Water Resources, 2017, 100:14-25 doi: 10.1016/j.advwatres.2016.12.003
    [26]
    Zhao B, MacMinn CW, Juanes R. Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences, 2016, 113(37):10251-10256 doi: 10.1073/pnas.1603387113
    [27]
    Xu W, Ok JT, Xiao F, et al. Effect of pore geometry and interfacial tension on water-oil displacement efficiency in oil-wet microfluidic porous media analogs. Physics of Fluids, 2014, 26(10):093102 http://www.researchgate.net/profile/Xiaolong_Yin/publication/265852004_Effect_of_pore_geometry_and_interfacial_tension_on_water-oil_displacement_efficiency_in_oil-wet_microfluidic_porous_media_analogs/links/541f9d8b0cf241a65a1ab8ac.pdf?disableCoverPage=true
    [28]
    Zhang C, Oostrom M, Wietsma TW, et al. Influence of viscous and capillary forces on immiscible fluid displacement:Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy & Fuels, 2011, 25(8):3493-3505 https://www.researchgate.net/publication/241971473_Influence_of_Viscous_and_Capillary_Forces_on_Immiscible_Fluid_Displacement_Pore-Scale_Experimental_Study_in_a_Water-Wet_Micromodel_Demonstrating_Viscous_and_Capillary_Fingering?ev=auth_pub
    [29]
    Cottin C, Bodiguel H, Colin A. Influence of wetting conditions on drainage in porous media:A microfluidic study. Physical Review E, 2011, 84(2):026311 doi: 10.1103/PhysRevE.84.026311
    [30]
    Raeesi B, Piri M. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media:A pore-scale network modeling approach. Journal of Hydrology, 2009, 376(3):337-352 http://www.sciencedirect.com/science/article/pii/S0022169409004442
    [31]
    Liu H, Ju Y, Wang N, et al. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Physical Review E, 2015, 92(3):033306 doi: 10.1103/PhysRevE.92.033306
    [32]
    Bandara U, Tartakovsky AM, Oostrom M, et al. Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Advances in Water Resources, 2013, 62:356-369 doi: 10.1016/j.advwatres.2013.09.014
    [33]
    Raeini AQ, Bijeljic B, Blunt MJ. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Advances in Water Resources, 2015, 83:102-110 doi: 10.1016/j.advwatres.2015.05.008
    [34]
    Ferrari A, Jimenez-Martinez J, Borgne TL, et al. Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resources Research, 2015, 51(3):1381-1400 doi: 10.1002/2014WR016384
    [35]
    Ferrari A, Lunati I. Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Advances in Water Resources, 2013, 57:19-31 doi: 10.1016/j.advwatres.2013.03.005
    [36]
    Greenshields C. OpenFOAM User Guide. Version 2.4. 0. OpenFOAM Foundation Ltd, 2015
    [37]
    Batzle M, Wang Z. Seismic properties of pore fluids. Geophysics, 1992, 57(11):1396-408 doi: 10.1190/1.1443207
    [38]
    Wang S, Tokunaga TK. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands:Implications for geologic carbon sequestration in carbonate reservoirs. Environmental Science & Technology, 2015, 49 (13):7208-7217 http://www.ncbi.nlm.nih.gov/pubmed/26517749
    [39]
    Abrãmoff MD, Magalhães PJ, Ram SJ. Image processing with Image J. Biophotonics International, 2004, 11(8):36-42
    [40]
    Roman S, Soulaine C, AlSaud MA, et al. Particle velocimetry analysis of immiscible two-phase flow in micromodels. Advances in Water Resources, 2015, 95:199-211 https://www.researchgate.net/publication/282459814_Particle_Velocimetry_Analysis_of_Immiscible_Two-Phase_Flow_in_Micromodels
    [41]
    Horgue P, Augier F, Duru P, et al. Experimental and numerical study of two-phase flows in arrays of cylinders. Chemical Engineering Science, 2013, 102(15):335-345 http://www.sciencedirect.com/science/article/pii/S0009250913005745
    [42]
    Geistlinger H, Ataei-Dadavi I, Mohammadian S, et al. The impact of pore structure and surface roughness on capillary trapping for 2-D and 3-D porous media:Comparison with percolation theory. Water Resources Research, 2015, 51(11):9094-9111 doi: 10.1002/2015WR017852
    [43]
    Mohammadian S, Geistlinger H, Vogel HJ. Quantification of gasphase trapping within the capillary fringe using computed microtomography. Vadose Zone Journal, 2015, 14(5):
    [44]
    Jimenez-Martínez J, Porter ML, Hyman JD, et al. Mixing in a threephase system:Enhanced production of oil-wet reservoirs by CO2 injection. Geophysical Research Letter, 2016, 43(1):196-205 doi: 10.1002/2015GL066787
    [45]
    Land CS. Calculation of imbibition relative permeability for twoand three-phase flow from rock properties. Society of Petroleum Engineers Journal, 1968, 8(2):149-156 doi: 10.2118/1942-PA
    [46]
    Jerauld G. General three-phase relative permeability model for Prudhoe Bay. SPE Reservoir Engineering, 1997, 12(04):255-263 doi: 10.2118/36178-PA
    [47]
    Spiteri EJ, Juanes R, Blunt MJ, et al. A new model of trapping and relative permeability hysteresis for all wettability characteristics. SPE Journal, 2008, 13(3):277-288 doi: 10.2118/96448-PA
  • Related Articles

    [1]Ma Tianran, Shen Weijun, Liu Weiqun, Xu Hao. DISCONTINUOUS GALERKIN FEM METHOD FOR THE COUPLING OF COMPRESSIBLE TWO-PHASE FLOW AND POROMECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2235-2245. DOI: 10.6052/0459-1879-21-177
    [2]Shi Dongyan, Wang Zhikai, Zhang Aman. A NOVEL LATTICE BOLTZMANN MODEL SIMULATING GAS-LIQUID TWO-PHASE FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 224-233. DOI: 10.6052/0459-1879-13-243
    [3]Chen Jianqiang, Chen Qi, Yuan Xianxu, Xie Yufei. NUMERICAL SIMULATION STUDY ON DYNAMIC RESPONSE UNDER RUDDER CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 302-306. DOI: 10.6052/0459-1879-12-222
    [4]Geng Yunfei Chao Yan. Numerical investigation of self-aligning spiked bodies at hypersonic speeds[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 441-446. DOI: 10.6052/0459-1879-2011-3-lxxb2010-732
    [5]Zhenpeng Liao, Heng Liu, Zhinan Xie. An explicit method for numerical simulation of wave motion---1-D wave motion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 350-360. DOI: 10.6052/0459-1879-2009-3-2007-635
    [6]Wanyuan Shi, Yourong Li, Imaishi Nobuyuki. Three-dimensional numerical simulation on the thermocapillary convection in an annular pool of silicone oil heated from inner wall[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 433-440. DOI: 10.6052/0459-1879-2008-4-2007-151
    [7]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [8]Zheng Wu. On the numerical simulation of perturbation's propagation and development in traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 785-791. DOI: 10.6052/0459-1879-2006-6-2005-392
    [9]CRACK TIP SUPERBLUNTING: EXPERIMENT, THEORY AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 468-478. DOI: 10.6052/0459-1879-1993-4-1995-667
    [10]TWO-DIMENSIONAL TWO-PHASE FLOW NUMERICAL SIMULATION OF IGNITION AND FLAMESPREADING PROCESS IN DENSE PARTICLES BED[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(3): 312-319. DOI: 10.6052/0459-1879-1992-3-1995-743
  • Cited by

    Periodical cited type(9)

    1. Lincong CHEN,Zi YUAN,Jiamin QIAN,J.Q.SUN. Random vibration of hysteretic systems under Poisson white noise excitations. Applied Mathematics and Mechanics(English Edition). 2023(02): 207-220 .
    2. 周碧柳,靳艳飞. 高斯色噪声和谐波激励共同作用下耦合SD振子的混沌研究. 力学学报. 2022(07): 2030-2040 . 本站查看
    3. 徐严钢,朱海涛,刘治国. 三维路径积分法的积分区间以及子区间数目选取方法研究. 应用力学学报. 2021(04): 1358-1365 .
    4. 郭秀秀,李长宇,史庆轩. 基于改进Bouc-Wen模型的非线性结构非平稳随机地震响应分析. 振动与冲击. 2020(18): 248-254+268 .
    5. 张婉洁,牛江川,申永军,杨绍普,王丽. 一类阻尼控制半主动隔振系统的解析研究. 力学学报. 2020(06): 1743-1754 . 本站查看
    6. 芮珍梅,陈建兵. 加性非平稳激励下结构速度响应的FPK方程降维. 力学学报. 2019(03): 922-931 . 本站查看
    7. 石晟,杜东升,王曙光,李威威. 概率密度演化方程TVD格式的自适应时间步长技术及其初值条件改进. 力学学报. 2019(04): 1223-1234 . 本站查看
    8. 邢子康,申永军,李向红. 接地式三要素型动力吸振器性能分析. 力学学报. 2019(05): 1466-1475 . 本站查看
    9. 邹广平,张冰,唱忠良,刘松. 弹簧-金属丝网橡胶组合减振器迟滞力学模型及实验研究. 力学学报. 2018(05): 1125-1134 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (2125) PDF downloads (556) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return