Citation: | Hu Ran, Chen Yifeng, Wan Jiamin, Zhou Chuangbing. SUPERCRITICAL CO2 WATER DISPLACEMENTS AND CO2 CAPILLARY TRAPPING: MICROMODEL EXPERIMENT AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 638-648. DOI: 10.6052/0459-1879-16-237 |
[1] |
Zhang W, Li Y, Xu T, et al. Long-term variations of CO2 trapped in different mechanisms in deep saline formations:a case study of the Songliao Basin, China. International Journal of Greenhouse Gas Control, 2009, 3(2):161-180 doi: 10.1016/j.ijggc.2008.07.007
|
[2] |
Metz B, Davidson O, De Coninck H, et al. IPCC special report on carbon dioxide capture and storage. Prepared by Working Group Ⅲ of the Intergovernmental Panel on Climate Change. IPCC, Cambridge, United Kingdom and New York, USA:Cambridge University Press, 2005
|
[3] |
李小春, 刘延锋, 白冰等.中国深部咸水含水层CO2储存优先区域选择.岩石力学与工程学报, 2006, 25(5):963-968
Li Xiaochun, Liu Yanfeng, Bai Bing, et al. Ranking and screening of CO2 Saline aquifer storage zones in China. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5):963-968 (in Chinese)
|
[4] |
李小春, 方志明, 魏宁等.我国CO2捕集与封存的技术路线探讨.岩土力学, 2009, 30(9):2674-2678 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx200909026&dbname=CJFD&dbcode=CJFQ
Li Xiaochun, Fang Zhiming, Wei Ning, et al. Discussion on technical roadmap of CO2 capture and storage in China. Rock and Soil Mechanics, 2009, 30(9):2674-2678 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ytlx200909026&dbname=CJFD&dbcode=CJFQ
|
[5] |
Suekane T, Nobuso T, Hirai S, et al. Geological storage of carbon dioxide by residual gas and solubility trapping. International Journal of Greenhouse Gas Control, 2008, 2(1):58-64 doi: 10.1016/S1750-5836(07)00096-5
|
[6] |
Al Mansoori SK, Itsekiri E, Iglauer S, et al. Measurements of nonwetting phase trapping applied to carbon dioxide storage. International Journal of Greenhouse Gas Control, 2010, 4(2):283-288 doi: 10.1016/j.ijggc.2009.09.013
|
[7] |
Tanino Y, Blunt M. Laboratory investigation of capillary trapping under mixed-wet conditions. Water Resources Research, 2013, 49(7):4311-4319 doi: 10.1002/wrcr.20344
|
[8] |
Al-Raoush RI. Impact of wettability on pore-scale characteristics of residual nonaqueous phase liquids. Environmental Science & Technology, 2009, 43(14):4796-4801 https://www.ncbi.nlm.nih.gov/pubmed/19673267
|
[9] |
Iglauer S, Pentland C, Busch A. CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research, 2015, 51(11):729-774 https://espace.curtin.edu.au/handle/20.500.11937/20032
|
[10] |
Chaudhary K, Bayani Cardenas M, Wolfe WW, et al. Pore-scale trapping of supercritical CO2 and the role of grain wettability and shape. Geophysical Research Letters, 2013, 40(15):3878-3882 doi: 10.1002/grl.50658
|
[11] |
Tanino Y, Blunt MJ. Capillary trapping in sandstones and carbonates:Dependence on pore structure. Water Resources Research, 2012, 48(8):W08525 doi: 10.1029/2011WR011712/full#footer-citing
|
[12] |
Moura M, Fiorentino EA, Måløy K, et al. Impact of sample geometry on the measurement of pressure-saturation curves:Experiments and simulations. Water Resources Research, 2015, 51(12):8900-8926
|
[13] |
Kimbrel EH, Herring AL, Armstrong RT, et al. Experimental characterization of nonwetting phase trapping and implications for geologic CO2 sequestration. International Journal of Greenhouse Gas Control, 2015, 42:1-15 doi: 10.1016/j.ijggc.2015.07.011
|
[14] |
Chatzis I, Kuntamukkula M, Morrow N. Effect of capillary number on the microstructure of residual oil in strongly water-wet sandstones. SPE Reservoir Engineering, 1988, 3(3):902-912 doi: 10.2118/13213-PA
|
[15] |
El-Maghraby RM, Blunt MJ. Residual CO2 trapping in Indiana limestone. Environmental Science & Technology, 2012, 47(1):227-233
|
[16] |
Andrew M, Bijeljic B, Blunt MJ. Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. International Journal of Greenhouse Gas Control, 2014, 22:1-14 doi: 10.1016/j.ijggc.2013.12.018
|
[17] |
Niu B, Al-Menhali A, Krevor SC. The impact of reservoir conditions on the residual trapping of carbon dioxide in Berea sandstone. Water Resources Research, 2015, 51(4):2009-2029 doi: 10.1002/2014WR016441
|
[18] |
Zhang C, Oostrom M, Grate JW, et al. Liquid CO2 displacement of water in a dual-permeability pore network micromodel. Environmental Science & Technology, 2011, 45(17):7581-7588 https://www.ncbi.nlm.nih.gov/pubmed/21774502
|
[19] |
Wang Y, Zhang C, Wei N, et al. Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network. Environmental Science & Technology, 2012, 47(1):212-218
|
[20] |
Lenormand R, Touboul E, Zarcone C. Numerical models and experiments on immiscible displacements in porous media. Journal Of Fluid Mechanics, 1988, 189:165-187 doi: 10.1017/S0022112088000953
|
[21] |
Andrew M, Bijeljic B, Blunt MJ. Pore-scale imaging of geological carbon dioxide storage under in situ conditions. Geophysical Research Letters, 2013, 40(15):3915-3918 doi: 10.1002/grl.50771
|
[22] |
武爱兵, 李铱, 常春等.不同成分盐水驱CO2.现代地质, 2014, 28(5):1061-1067 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201405024&dbname=CJFD&dbcode=CJFQ
Wu Aibing, Li Yi, Chang Chun, et al. The residual gas saturation of different components of saline flooding CO2. Geoscience, 2014, 28(5):1061-1067 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xddz201405024&dbname=CJFD&dbcode=CJFQ
|
[23] |
Kim Y, Wan J, Kneafsey TJ, et al. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine:pore-scale studies in micromodels. Environmental Science & Technology, 2012, 46(8):4228-4235 http://www.ncbi.nlm.nih.gov/pubmed/22404561
|
[24] |
Chang C, Zhou Q, Kneafsey TJ, et al. Pore-scale supercritical CO2 dissolution and mass transfer under imbibition conditions. Advances in Water Resources, 2016, 92:142-158 doi: 10.1016/j.advwatres.2016.03.015
|
[25] |
Chang C, Zhou Q, Oostrom M, et al. Pore-scale supercritical CO2 dissolution and mass transfer under drainage conditions. Advances in Water Resources, 2017, 100:14-25 doi: 10.1016/j.advwatres.2016.12.003
|
[26] |
Zhao B, MacMinn CW, Juanes R. Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences, 2016, 113(37):10251-10256 doi: 10.1073/pnas.1603387113
|
[27] |
Xu W, Ok JT, Xiao F, et al. Effect of pore geometry and interfacial tension on water-oil displacement efficiency in oil-wet microfluidic porous media analogs. Physics of Fluids, 2014, 26(10):093102 http://www.researchgate.net/profile/Xiaolong_Yin/publication/265852004_Effect_of_pore_geometry_and_interfacial_tension_on_water-oil_displacement_efficiency_in_oil-wet_microfluidic_porous_media_analogs/links/541f9d8b0cf241a65a1ab8ac.pdf?disableCoverPage=true
|
[28] |
Zhang C, Oostrom M, Wietsma TW, et al. Influence of viscous and capillary forces on immiscible fluid displacement:Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy & Fuels, 2011, 25(8):3493-3505 https://www.researchgate.net/publication/241971473_Influence_of_Viscous_and_Capillary_Forces_on_Immiscible_Fluid_Displacement_Pore-Scale_Experimental_Study_in_a_Water-Wet_Micromodel_Demonstrating_Viscous_and_Capillary_Fingering?ev=auth_pub
|
[29] |
Cottin C, Bodiguel H, Colin A. Influence of wetting conditions on drainage in porous media:A microfluidic study. Physical Review E, 2011, 84(2):026311 doi: 10.1103/PhysRevE.84.026311
|
[30] |
Raeesi B, Piri M. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media:A pore-scale network modeling approach. Journal of Hydrology, 2009, 376(3):337-352 http://www.sciencedirect.com/science/article/pii/S0022169409004442
|
[31] |
Liu H, Ju Y, Wang N, et al. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Physical Review E, 2015, 92(3):033306 doi: 10.1103/PhysRevE.92.033306
|
[32] |
Bandara U, Tartakovsky AM, Oostrom M, et al. Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Advances in Water Resources, 2013, 62:356-369 doi: 10.1016/j.advwatres.2013.09.014
|
[33] |
Raeini AQ, Bijeljic B, Blunt MJ. Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Advances in Water Resources, 2015, 83:102-110 doi: 10.1016/j.advwatres.2015.05.008
|
[34] |
Ferrari A, Jimenez-Martinez J, Borgne TL, et al. Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resources Research, 2015, 51(3):1381-1400 doi: 10.1002/2014WR016384
|
[35] |
Ferrari A, Lunati I. Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Advances in Water Resources, 2013, 57:19-31 doi: 10.1016/j.advwatres.2013.03.005
|
[36] |
Greenshields C. OpenFOAM User Guide. Version 2.4. 0. OpenFOAM Foundation Ltd, 2015
|
[37] |
Batzle M, Wang Z. Seismic properties of pore fluids. Geophysics, 1992, 57(11):1396-408 doi: 10.1190/1.1443207
|
[38] |
Wang S, Tokunaga TK. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands:Implications for geologic carbon sequestration in carbonate reservoirs. Environmental Science & Technology, 2015, 49 (13):7208-7217 http://www.ncbi.nlm.nih.gov/pubmed/26517749
|
[39] |
Abrãmoff MD, Magalhães PJ, Ram SJ. Image processing with Image J. Biophotonics International, 2004, 11(8):36-42
|
[40] |
Roman S, Soulaine C, AlSaud MA, et al. Particle velocimetry analysis of immiscible two-phase flow in micromodels. Advances in Water Resources, 2015, 95:199-211 https://www.researchgate.net/publication/282459814_Particle_Velocimetry_Analysis_of_Immiscible_Two-Phase_Flow_in_Micromodels
|
[41] |
Horgue P, Augier F, Duru P, et al. Experimental and numerical study of two-phase flows in arrays of cylinders. Chemical Engineering Science, 2013, 102(15):335-345 http://www.sciencedirect.com/science/article/pii/S0009250913005745
|
[42] |
Geistlinger H, Ataei-Dadavi I, Mohammadian S, et al. The impact of pore structure and surface roughness on capillary trapping for 2-D and 3-D porous media:Comparison with percolation theory. Water Resources Research, 2015, 51(11):9094-9111 doi: 10.1002/2015WR017852
|
[43] |
Mohammadian S, Geistlinger H, Vogel HJ. Quantification of gasphase trapping within the capillary fringe using computed microtomography. Vadose Zone Journal, 2015, 14(5):
|
[44] |
Jimenez-Martínez J, Porter ML, Hyman JD, et al. Mixing in a threephase system:Enhanced production of oil-wet reservoirs by CO2 injection. Geophysical Research Letter, 2016, 43(1):196-205 doi: 10.1002/2015GL066787
|
[45] |
Land CS. Calculation of imbibition relative permeability for twoand three-phase flow from rock properties. Society of Petroleum Engineers Journal, 1968, 8(2):149-156 doi: 10.2118/1942-PA
|
[46] |
Jerauld G. General three-phase relative permeability model for Prudhoe Bay. SPE Reservoir Engineering, 1997, 12(04):255-263 doi: 10.2118/36178-PA
|
[47] |
Spiteri EJ, Juanes R, Blunt MJ, et al. A new model of trapping and relative permeability hysteresis for all wettability characteristics. SPE Journal, 2008, 13(3):277-288 doi: 10.2118/96448-PA
|
[1] | Ma Tianran, Shen Weijun, Liu Weiqun, Xu Hao. DISCONTINUOUS GALERKIN FEM METHOD FOR THE COUPLING OF COMPRESSIBLE TWO-PHASE FLOW AND POROMECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2235-2245. DOI: 10.6052/0459-1879-21-177 |
[2] | Shi Dongyan, Wang Zhikai, Zhang Aman. A NOVEL LATTICE BOLTZMANN MODEL SIMULATING GAS-LIQUID TWO-PHASE FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 224-233. DOI: 10.6052/0459-1879-13-243 |
[3] | Chen Jianqiang, Chen Qi, Yuan Xianxu, Xie Yufei. NUMERICAL SIMULATION STUDY ON DYNAMIC RESPONSE UNDER RUDDER CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 302-306. DOI: 10.6052/0459-1879-12-222 |
[4] | Geng Yunfei Chao Yan. Numerical investigation of self-aligning spiked bodies at hypersonic speeds[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 441-446. DOI: 10.6052/0459-1879-2011-3-lxxb2010-732 |
[5] | Zhenpeng Liao, Heng Liu, Zhinan Xie. An explicit method for numerical simulation of wave motion---1-D wave motion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 350-360. DOI: 10.6052/0459-1879-2009-3-2007-635 |
[6] | Wanyuan Shi, Yourong Li, Imaishi Nobuyuki. Three-dimensional numerical simulation on the thermocapillary convection in an annular pool of silicone oil heated from inner wall[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 433-440. DOI: 10.6052/0459-1879-2008-4-2007-151 |
[7] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[8] | Zheng Wu. On the numerical simulation of perturbation's propagation and development in traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 785-791. DOI: 10.6052/0459-1879-2006-6-2005-392 |
[9] | CRACK TIP SUPERBLUNTING: EXPERIMENT, THEORY AND NUMERICAL SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 468-478. DOI: 10.6052/0459-1879-1993-4-1995-667 |
[10] | TWO-DIMENSIONAL TWO-PHASE FLOW NUMERICAL SIMULATION OF IGNITION AND FLAMESPREADING PROCESS IN DENSE PARTICLES BED[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(3): 312-319. DOI: 10.6052/0459-1879-1992-3-1995-743 |
1. |
Lincong CHEN,Zi YUAN,Jiamin QIAN,J.Q.SUN. Random vibration of hysteretic systems under Poisson white noise excitations. Applied Mathematics and Mechanics(English Edition). 2023(02): 207-220 .
![]() |
|
2. |
周碧柳,靳艳飞. 高斯色噪声和谐波激励共同作用下耦合SD振子的混沌研究. 力学学报. 2022(07): 2030-2040 .
![]() | |
3. |
徐严钢,朱海涛,刘治国. 三维路径积分法的积分区间以及子区间数目选取方法研究. 应用力学学报. 2021(04): 1358-1365 .
![]() | |
4. |
郭秀秀,李长宇,史庆轩. 基于改进Bouc-Wen模型的非线性结构非平稳随机地震响应分析. 振动与冲击. 2020(18): 248-254+268 .
![]() | |
5. |
张婉洁,牛江川,申永军,杨绍普,王丽. 一类阻尼控制半主动隔振系统的解析研究. 力学学报. 2020(06): 1743-1754 .
![]() | |
6. |
芮珍梅,陈建兵. 加性非平稳激励下结构速度响应的FPK方程降维. 力学学报. 2019(03): 922-931 .
![]() | |
7. |
石晟,杜东升,王曙光,李威威. 概率密度演化方程TVD格式的自适应时间步长技术及其初值条件改进. 力学学报. 2019(04): 1223-1234 .
![]() | |
8. |
邢子康,申永军,李向红. 接地式三要素型动力吸振器性能分析. 力学学报. 2019(05): 1466-1475 .
![]() | |
9. |
邹广平,张冰,唱忠良,刘松. 弹簧-金属丝网橡胶组合减振器迟滞力学模型及实验研究. 力学学报. 2018(05): 1125-1134 .
![]() |