Citation: | Zhu Shuai, Zhou Gang, Liu Xiaomei, Weng Shilie. PRECISE SYMPLECTIC TIME FINITE ELEMENT METHOD AND THE STUDY OF PHASE ERROR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 399-405. DOI: 10.6052/0459-1879-15-272 |
1 Feng K. Difference schemes for Hamiltonian formalism and symplectic geometry. Journal of Computational Mathematics, 1986,4(3):279-289
|
2 Feng K, Qin M. Symplectic Geometric Algorithms for Hamiltonian Systems. Heidelberg, Dordrecht, London, New-York:Springer, 2010
|
3 Calvo MP. Numerical Hamiltonian Problems. CRC Press, 1994
|
4 Brusa L, Nigro L. A one-step method for direct integration of structural dynamic equations. International Journal for Numerical Methods in Engineering, 1980, 15(5):685-699
|
5 邢誉峰, 杨蓉. 单步辛算法的相位误差分析及修正. 力学学报, 2007, 39(5):668-671(Xing Yufeng, Yang Rong. Phase errors and their correction in symplectic implicit single-step algorithm. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5):668-671(in Chinese))
|
6 邢誉峰, 冯伟. 李级数算法和显式辛算法的相位分析. 计算力学学报, 2009, 26(2):167-171(Xing Yufeng, Feng Wei. Phase analysis of Lie series algorithm and explicit symplectic algorithm. Chinese Journal of Computational Mechanics, 2009, 26(2):167-171(in Chinese))
|
7 陈璐, 王雨顺. 保结构算法的相位误差分析及其修正. 计算数学, 2014,(3):271-290(Chen Lu, Wang Yushun. Phase error analysis and correction of structure preserving algorithms. Mathematica Numerica Sinica, 2014,(3):271-290(in Chinese))
|
8 Vyver HVD. A symplectic Runge-Kutta-Nystrom method with minimal phase-lag. Physics Letters A, 2007, 367(1):16-24
|
9 Monovasilis T, Kalogiratou Z, Simos TE. Exponentially fitted symplectic Runge-Kutta-Nyström methods. Appl Math Inf Sci, 2013, 7(1):81-85
|
10 Monovasilis T, Kalogiratou Z, Simos TE. Symplectic partitioned Runge-Kutta methods with minimal phase-lag. Computer Physics Communications, 2010, 181(7):1251-1254
|
11 Simos TE. A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2011, 49(10):2486-2518
|
12 Monovasilis T, Kalogiratou Z, Simos TE. Two new phase-fitted symplectic partitioned Runge-Kutta methods. International Journal of Modern Physics C, 2011, 22(12):1343-1355
|
13 刘晓梅, 周钢, 王永泓等. 辛算法的纠飘研究. 北京航空航天大学学报, 2013, 39(1):22-26(Liu Xiaomei, Zhou Gang, Wang Yonghong. Rectifying drifts of symplectic algorithm. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1):22-26(in Chinese))
|
14 颜娜. 辛算法及其相位飘移性质的研究. 上海交通大学, 2010(Yan Na. The study on phase shift properties based on symplectic algorithm.[Master Thesis]. Shanghai:Shanghai Jiao Tong University,2010(in Chinese))
|
15 Tang W, Sun Y. Time finite element methods:A unified framework for numerical discretizations of ODEs. Applied Mathematics & Computation, 2012, 219(4):2158-2179
|
16 汤琼, 陈传淼. 哈密顿系统的连续有限元法. 应用数学和力学, 2007, 28(8):958-966(Tang Qiong, Chen Chuanmiao. Continuous finite element methods of hamiltonian systems. Applied Mathematics and Mechanics, 2007, 28(8):958-966(in Chinese))
|
17 陈传淼, 汤琼. 哈密顿系统的有限元研究. 数学物理学报:A 辑, 2011, 31(1):18-33(Chen Chuanmiao, Tang Qiong. Study of finite element for Hamiltonian systems. Acta Mathematica Scientia, 2011, 31(1):18-33(in Chinese))
|
18 Hu SF, Chen CM. Runge-Kutta method, finite element method, and regular algorithms for Hamiltonian system. Applied Mathematics & Mechanics:English Edition, 2013, 34(6):747-760
|
19 钟万勰. 结构动力方程的精细时程积分法. 大连理工大学学报, 1994,(2):131-136(Zhong Wanxie. On precise time-integration method for structural dynamics. Journal of Dalian University of Technology, 1994,(2):131-136(in Chinese))
|
20 Zheng Z, Yao WX. Time domain FEM and symplectic conservation. Journal of Mechanical Strength, 2005, 2:008
|
21 曾进, 周钢. 精细辛算法. 上海交通大学学报, 1997,(9):31-33(Zeng Jin, Zhou Gang. Precise symplectic algorithm. Journal of Shanghai Jiao Tong University, 1997,(9):31-33(in Chinese))
|
22 徐明毅, 张勇传. 精细辛几何算法的误差估计. 数学物理学报, 2006, 26(2):314-320(Xu Mingyi, Zhang Yongchuan. Accuracy estimation of precise symplectic integration method. Acta Mathematica Scientia, 2006, 26(2):314-320(in Chinese))
|
23 Cohen D, Hairer E, Lubich Ch. Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numerical Mathematics, 2005, 45(2):287-305
|
24 Klaus-Jürgen Bathe, Gunwoo Noh. Insight into an implicit time integration scheme for structural dynamics. Computers & Structures, 2012, 98:1-6
|
25 Wang YX, Tian XD, Zhou G. Homogenized high precision direct integration scheme and its applications in engineering. Communications in Numerical Methods in Engineering, 2002, 18(6):429-439
|
26 王跃先, 周钢, 陈军等. 齐次扩容精细算法. 计算力学学报, 2001, 18(3):339-344(Wang Yuexian, Zhou Gang, Chen Jun, et al. Homogenized high precision direct integration scheme. Chinese Journal of Computational Mechanics, 2001, 18(3):339-344(in Chinese))
|
27 周钢, 王跃先, 贾国庆等. 一种基于Taylor 级数的齐次扩容精细算法. 上海交通大学学报, 2001,(12):1916-1919(Zhou Gang, Wang Yuexian, Jia Guoqing, et al. A homogenized high precise direct integration based on Taylor serials. Journal of Shanghai Jiao Tong University, 2001,(12):1916-1919(in Chinese))
|
28 时小红, 周钢, 付召华. 基于Legendre 多项式函数系的齐次扩容精细算法. 计算力学学报, 2005,(3):335-338(Shi Xiaohong, Zhou Gang, Fu Shaohua. A homogenized high precise direct integration based on Legendre serials. Chinese Journal of Computational Mechanics, 2005,(3):335-338(in Chinese))
|
29 王龙, 周钢. 具有任意激励的非齐次线性自治系统的齐次扩容精细算法. 上海理工大学学报, 2006,(2):128-132(Wang Long, Zhou Gang. New homogenized high precision direct integration to solve nonhomogeneous autonomy system with arbitrary stimulus. J University of Shanghai for Science and Technology, 2006,(2):128-132(in Chinese))
|
30 付召华, 周钢, 罗顺等. 基于Chebyshev 多项式函数系的齐次扩容精细算法. 东华大学学报(自然科学版), 2006,(2):46-49(Fu Shaohua, Zhou Gang, Luo Shun, et al. Homogenized high precision direct integration based on Chebyshev polynomial series. Journal of Donghua University, 2006,(2):46-49(in Chinese))
|
[1] | SEM-FEM coupled simulation method for soil structure dynamic interaction considering local site effects[J]. Chinese Journal of Theoretical and Applied Mechanics. |
[2] | Huang Congyi, Zhao Weiwen, Wan Decheng. SIMULATION OF THE MOTION OF AN ELASTIC HULL IN REGULAR WAVES BASED ON MPS-FEM METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3319-3332. DOI: 10.6052/0459-1879-22-468 |
[3] | Yang Dongbao, Gao Junsong, Liu Jianping, Song Chu, Ji Shunying. ANALYSIS OF ICE-INDUCTED STRUCTURE VIBRATION OF OFFSHORE WIND TURBINES BASED ON DEM-FEM COUPLED METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 682-692. DOI: 10.6052/0459-1879-20-386 |
[4] | Lin Gao, Han Zejun, Li Weidong, Li Jianbo. A PRECISE INTEGRATION APPROACH FOR THE DYNAMIC-STIFFNESS MATRIX OF STRIP FOOTINGS ON A LAYERED MEDIUM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 557-567. DOI: 10.6052/0459-1879-2012-3-20120312 |
[5] | Yang-Ping Yao Zheng Wan Zhenhua Qin. Dynamic UH model for sands and its application in FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 132-139. DOI: 10.6052/0459-1879-2012-1-lxxb2010-740 |
[6] | Minghui Fu, Zuoqiu Liu, Jinghua Lin. A Generalized Precise Time Step Integration Method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 672-677. DOI: 10.6052/0459-1879-2007-5-2007-048 |
[7] | Yufeng Xing, Rong Yang. Phase errors and their correction in symplectic implicit single-step algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 668-671. DOI: 10.6052/0459-1879-2007-5-2006-561 |
[8] | Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167 |
[9] | Renewal precise time step integration method of structural dynamic analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2). DOI: 10.6052/0459-1879-2004-2-2002-420 |
[10] | Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946 |