EI、Scopus 收录
中文核心期刊
Zhu Shuai, Zhou Gang, Liu Xiaomei, Weng Shilie. PRECISE SYMPLECTIC TIME FINITE ELEMENT METHOD AND THE STUDY OF PHASE ERROR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 399-405. DOI: 10.6052/0459-1879-15-272
Citation: Zhu Shuai, Zhou Gang, Liu Xiaomei, Weng Shilie. PRECISE SYMPLECTIC TIME FINITE ELEMENT METHOD AND THE STUDY OF PHASE ERROR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 399-405. DOI: 10.6052/0459-1879-15-272

PRECISE SYMPLECTIC TIME FINITE ELEMENT METHOD AND THE STUDY OF PHASE ERROR

  • Received Date: July 21, 2015
  • Revised Date: November 09, 2015
  • Hamiltonian system is one kind of important dynamical systems.Many kinds of symplectic methods were proposed for Hamiltonian systems, such as SRK, SPRK, multi-step method, generating function method and so on.The numerical methods for Hamiltonian can not be satisfied the character properties(symplectic and energy-preserving) at the same time.Recently, time finite element method was proposed for Hamiltonian systems, which was symplectic and could keep the conservation of energy.However, the mentioned methods have phase-drift(orbit deviation).For longtime simulation, the accuracy decay a lot.Precise Symplectic Time Finite Element Method is proposed for Hamiltonian systems(HPD-FEM), which could keep the conservation of Hamiltonian function and the structure of symplectic of Hamiltonian systems, as finite element method does.Meanwhile, HPD-FEM can highly decrease the phase error compared to FEM.HPD-FEM has fewer phase-error than the determined schemes aimed at decreasing the phase drift, such as:FSJS, RKN, and SPRK.FSJS, RKN and SPRK cannot keep the Hamiltonian function of Hamiltonian system, while HPD-FEM can keep the energy conservation.For the systems with different frequencies or the stiff systems, HPDFEM can simulate the signals both high and low frequency, with big time step.During the computation, HPD-FEM does not increase the cost of computation.Numerical experiment shows the validity of HPD-FEM.
  • 1 Feng K. Difference schemes for Hamiltonian formalism and symplectic geometry. Journal of Computational Mathematics, 1986,4(3):279-289
    2 Feng K, Qin M. Symplectic Geometric Algorithms for Hamiltonian Systems. Heidelberg, Dordrecht, London, New-York:Springer, 2010
    3 Calvo MP. Numerical Hamiltonian Problems. CRC Press, 1994
    4 Brusa L, Nigro L. A one-step method for direct integration of structural dynamic equations. International Journal for Numerical Methods in Engineering, 1980, 15(5):685-699
    5 邢誉峰, 杨蓉. 单步辛算法的相位误差分析及修正. 力学学报, 2007, 39(5):668-671(Xing Yufeng, Yang Rong. Phase errors and their correction in symplectic implicit single-step algorithm. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5):668-671(in Chinese))
    6 邢誉峰, 冯伟. 李级数算法和显式辛算法的相位分析. 计算力学学报, 2009, 26(2):167-171(Xing Yufeng, Feng Wei. Phase analysis of Lie series algorithm and explicit symplectic algorithm. Chinese Journal of Computational Mechanics, 2009, 26(2):167-171(in Chinese))
    7 陈璐, 王雨顺. 保结构算法的相位误差分析及其修正. 计算数学, 2014,(3):271-290(Chen Lu, Wang Yushun. Phase error analysis and correction of structure preserving algorithms. Mathematica Numerica Sinica, 2014,(3):271-290(in Chinese))
    8 Vyver HVD. A symplectic Runge-Kutta-Nystrom method with minimal phase-lag. Physics Letters A, 2007, 367(1):16-24
    9 Monovasilis T, Kalogiratou Z, Simos TE. Exponentially fitted symplectic Runge-Kutta-Nyström methods. Appl Math Inf Sci, 2013, 7(1):81-85
    10 Monovasilis T, Kalogiratou Z, Simos TE. Symplectic partitioned Runge-Kutta methods with minimal phase-lag. Computer Physics Communications, 2010, 181(7):1251-1254
    11 Simos TE. A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2011, 49(10):2486-2518
    12 Monovasilis T, Kalogiratou Z, Simos TE. Two new phase-fitted symplectic partitioned Runge-Kutta methods. International Journal of Modern Physics C, 2011, 22(12):1343-1355
    13 刘晓梅, 周钢, 王永泓等. 辛算法的纠飘研究. 北京航空航天大学学报, 2013, 39(1):22-26(Liu Xiaomei, Zhou Gang, Wang Yonghong. Rectifying drifts of symplectic algorithm. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1):22-26(in Chinese))
    14 颜娜. 辛算法及其相位飘移性质的研究. 上海交通大学, 2010(Yan Na. The study on phase shift properties based on symplectic algorithm.[Master Thesis]. Shanghai:Shanghai Jiao Tong University,2010(in Chinese))
    15 Tang W, Sun Y. Time finite element methods:A unified framework for numerical discretizations of ODEs. Applied Mathematics & Computation, 2012, 219(4):2158-2179
    16 汤琼, 陈传淼. 哈密顿系统的连续有限元法. 应用数学和力学, 2007, 28(8):958-966(Tang Qiong, Chen Chuanmiao. Continuous finite element methods of hamiltonian systems. Applied Mathematics and Mechanics, 2007, 28(8):958-966(in Chinese))
    17 陈传淼, 汤琼. 哈密顿系统的有限元研究. 数学物理学报:A 辑, 2011, 31(1):18-33(Chen Chuanmiao, Tang Qiong. Study of finite element for Hamiltonian systems. Acta Mathematica Scientia, 2011, 31(1):18-33(in Chinese))
    18 Hu SF, Chen CM. Runge-Kutta method, finite element method, and regular algorithms for Hamiltonian system. Applied Mathematics & Mechanics:English Edition, 2013, 34(6):747-760
    19 钟万勰. 结构动力方程的精细时程积分法. 大连理工大学学报, 1994,(2):131-136(Zhong Wanxie. On precise time-integration method for structural dynamics. Journal of Dalian University of Technology, 1994,(2):131-136(in Chinese))
    20 Zheng Z, Yao WX. Time domain FEM and symplectic conservation. Journal of Mechanical Strength, 2005, 2:008
    21 曾进, 周钢. 精细辛算法. 上海交通大学学报, 1997,(9):31-33(Zeng Jin, Zhou Gang. Precise symplectic algorithm. Journal of Shanghai Jiao Tong University, 1997,(9):31-33(in Chinese))
    22 徐明毅, 张勇传. 精细辛几何算法的误差估计. 数学物理学报, 2006, 26(2):314-320(Xu Mingyi, Zhang Yongchuan. Accuracy estimation of precise symplectic integration method. Acta Mathematica Scientia, 2006, 26(2):314-320(in Chinese))
    23 Cohen D, Hairer E, Lubich Ch. Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numerical Mathematics, 2005, 45(2):287-305
    24 Klaus-Jürgen Bathe, Gunwoo Noh. Insight into an implicit time integration scheme for structural dynamics. Computers & Structures, 2012, 98:1-6
    25 Wang YX, Tian XD, Zhou G. Homogenized high precision direct integration scheme and its applications in engineering. Communications in Numerical Methods in Engineering, 2002, 18(6):429-439
    26 王跃先, 周钢, 陈军等. 齐次扩容精细算法. 计算力学学报, 2001, 18(3):339-344(Wang Yuexian, Zhou Gang, Chen Jun, et al. Homogenized high precision direct integration scheme. Chinese Journal of Computational Mechanics, 2001, 18(3):339-344(in Chinese))
    27 周钢, 王跃先, 贾国庆等. 一种基于Taylor 级数的齐次扩容精细算法. 上海交通大学学报, 2001,(12):1916-1919(Zhou Gang, Wang Yuexian, Jia Guoqing, et al. A homogenized high precise direct integration based on Taylor serials. Journal of Shanghai Jiao Tong University, 2001,(12):1916-1919(in Chinese))
    28 时小红, 周钢, 付召华. 基于Legendre 多项式函数系的齐次扩容精细算法. 计算力学学报, 2005,(3):335-338(Shi Xiaohong, Zhou Gang, Fu Shaohua. A homogenized high precise direct integration based on Legendre serials. Chinese Journal of Computational Mechanics, 2005,(3):335-338(in Chinese))
    29 王龙, 周钢. 具有任意激励的非齐次线性自治系统的齐次扩容精细算法. 上海理工大学学报, 2006,(2):128-132(Wang Long, Zhou Gang. New homogenized high precision direct integration to solve nonhomogeneous autonomy system with arbitrary stimulus. J University of Shanghai for Science and Technology, 2006,(2):128-132(in Chinese))
    30 付召华, 周钢, 罗顺等. 基于Chebyshev 多项式函数系的齐次扩容精细算法. 东华大学学报(自然科学版), 2006,(2):46-49(Fu Shaohua, Zhou Gang, Luo Shun, et al. Homogenized high precision direct integration based on Chebyshev polynomial series. Journal of Donghua University, 2006,(2):46-49(in Chinese))
  • Related Articles

    [1]SEM-FEM coupled simulation method for soil structure dynamic interaction considering local site effects[J]. Chinese Journal of Theoretical and Applied Mechanics.
    [2]Huang Congyi, Zhao Weiwen, Wan Decheng. SIMULATION OF THE MOTION OF AN ELASTIC HULL IN REGULAR WAVES BASED ON MPS-FEM METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3319-3332. DOI: 10.6052/0459-1879-22-468
    [3]Yang Dongbao, Gao Junsong, Liu Jianping, Song Chu, Ji Shunying. ANALYSIS OF ICE-INDUCTED STRUCTURE VIBRATION OF OFFSHORE WIND TURBINES BASED ON DEM-FEM COUPLED METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 682-692. DOI: 10.6052/0459-1879-20-386
    [4]Lin Gao, Han Zejun, Li Weidong, Li Jianbo. A PRECISE INTEGRATION APPROACH FOR THE DYNAMIC-STIFFNESS MATRIX OF STRIP FOOTINGS ON A LAYERED MEDIUM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 557-567. DOI: 10.6052/0459-1879-2012-3-20120312
    [5]Yang-Ping Yao Zheng Wan Zhenhua Qin. Dynamic UH model for sands and its application in FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 132-139. DOI: 10.6052/0459-1879-2012-1-lxxb2010-740
    [6]Minghui Fu, Zuoqiu Liu, Jinghua Lin. A Generalized Precise Time Step Integration Method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 672-677. DOI: 10.6052/0459-1879-2007-5-2007-048
    [7]Yufeng Xing, Rong Yang. Phase errors and their correction in symplectic implicit single-step algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 668-671. DOI: 10.6052/0459-1879-2007-5-2006-561
    [8]Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167
    [9]Renewal precise time step integration method of structural dynamic analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2). DOI: 10.6052/0459-1879-2004-2-2002-420
    [10]Yurun Fan, . 挤出胀大流动的有限元方法研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(3): 285-292. DOI: 10.6052/0459-1879-1990-3-1995-946

Catalog

    Article Metrics

    Article views (1131) PDF downloads (878) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return