EI、Scopus 收录
中文核心期刊
Chen Xiangwei, Cao Qiupeng, Mei Fengxiang. GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 684-691. DOI: 10.6052/0459-1879-15-268
Citation: Chen Xiangwei, Cao Qiupeng, Mei Fengxiang. GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 684-691. DOI: 10.6052/0459-1879-15-268

GENERALIZED GRADIENT REPRESENTATION OF NONHOLONOMIC SYSTEM OF CHETAEV'S TYPE

  • Received Date: July 19, 2015
  • Revised Date: January 03, 2016
  • It is an important and di cult problem to study the stability of the non-steady and nonholonomic mechanical systems, and it is di cult to construct the Lyapunov function directly from the di erential equation. This paper gives an indirect method. The ten kinds of generalized gradient systems are proposed and the di erential equations of the ten kinds of generalized gradient systems are given respectively. Furthermore, the generalized gradient representations of a nonholonomic system of Chetaev's type are studied. The condition under which a nonholonomic system can be considered as a generalized gradient system is obtained, so the nonholonomic system of Chetaev's type is transformed into each generalized gradient systems. The characteristic of the generalized gradient systems can be used to study the stability of the nonholonomic system. This method appears to be more e ective when it is di cult to construct the Lyapunov function directly. Some examples are given to illustrate the application of the result.
  • 1 Hertz HR. Die Prinzipien der Mechanik. Leibzing: Gesammelte Werke, 1894
    2 牛青萍. 经典力学基本微分原理与不完整力学组的运动方程. 力学学报, 1964, 7(2): 139-148 (Niu Qingping. The fundamental differential principle of classical mechanics and the equations of motion of nonholonomic systems. Acta Mechanica Sinica, 1964, 7(2):139-148 (in Chinese))
    3 Mei FX. Nonholonomic mechanics. ASME Appl Mech Rev, 2000,53: 283-305
    4 李子平. 经典和量子约束系统及其对称性质. 北京: 北京工业大学出版社, 1993 (Li Ziping. Classical and Quantum Constrained Systems and Their Symmetries. Beijing: Beijing University of Technology Press, 1993 (in Chinese))
    5 Luo SK. Relativistic variational principles and equations of motion of high-order nonlinear nonholonomic systems. In: Proceedings of the International Conference on Dynamics, Vibration and Control, Beijing: Peking University Press, 1990, 645-652
    6 Fu JL, Chen LQ, Luo Y, et al. Stability for the equilibrium state manifold of relativistic Birkhoff systems. Chinese Physics, 2003,12: 351-356
    7 Zhang Y. Integrating factors and conservation laws for relativistic mechanical system. Communications in Theoretical Physics, 2005,44: 231-234
    8 刘延柱. 航天器姿态动力学. 北京: 国防工业出版社, 1995 (Liu Yanzhu. Spacecraft Attitude Dynamics. Beijing: National Defense Industry Press, 1995 (in Chinese))
    9 Ostrovskaya S, Angels J. Nonholonomic systems revisited within the frame work of analytical mechanics. ASME Appl Mech Rev,1998, 51: 415-433
    10 Papastavridis JG. A panoramic overview of the principles and equations of motion of advanced engineering dynamics. ASME Appl Mech Rev, 1998, 51: 239-265
    11 Han YL, Wang XX, Zhang ML, et al. Special Lie symmetry and Hojman conserved quantity of Appell equations for a Chetaev nonholonomic system. Nonlinear Dyn, 2013, 73: 357-361
    12 杨新芳, 孙现亭, 王肖肖等. 变质量Chetaev 型非完整系统Appell 方程的Mei 对称性和Mei 守恒量. 物理学报, 2011, 60(11):111101 (Yang Xinfang, Sun Xianting, Wang Xiaoxiao, et al. Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaev's type with variable mass. Acta Phys Sin, 2011, 60(11): 111101 (in Chinese))
    13 Valery VK. On invariant manifolds of nonholonomic systems. Regular and Chaotic Dynamics, 2012, 17: 131-141
    14 Hirsch MW, Smale S, Devaney RL. Differential Equations, Dynamical Systems, and An Introduction to Chaos. Singapore: Elsevier,2008
    15 Mc Lachlan RI, Quispel GRW, Robidoux N. Geometric integration using discrete gradients. Phil Trans R Soc Lond A, 1999, 357: 1021-1045
    16 梅凤翔. 关于梯度系统. 力学与实践, 2012, 34: 89-90 (Mei Fengxiang. On gradient system. Mechanics in Engineering, 2012, 34:89-90 (in Chinese))
    17 梅凤翔. 分析力学下卷. 北京: 北京理工大学出版社, 2013 (Mei Fengxiang. Analytical Mechanics Ⅱ. Beijing: Beijing Institute of Technology Press, 2013 (in Chinese))
    18 Chen XW, Zhao GL, Mei FX. A fractional gradient representation of the Poincaré equations. Nonlinear Dynamics, 2013, 73: 579-582
    19 Tomáš B, Ralph C, Eva F. Every ordinary differential equation with a strict Lyapunov function is a gradient system. Monatsh Math, 2012,166: 57-72
    20 Marin AM, Ortiz RD, Rodriguez JA. A generalization of a gradient system. International Mathematical Forum, 2013, 8: 803-806
    21 陈向炜, 李彦敏, 梅凤翔. 双参数对广义Hamilton 系统稳定性的影响. 应用数学和力学, 2014, 35(12): 1392-1397 (Chen Xiangwei, Li Yanmin, Mei Fengxiang. Dependance of stability of equilibrium of generalized Hamilton system on two parameters. Applied Mathematics and Mechanics, 2014, 35(12): 1392-1397 (in Chinese))
    22 梅凤翔, 吴惠彬. 广义Birkhoff 系统的梯度表示. 动力学与控制学报, 2012, 10(4): 289-292 (Mei Fengxiang, Wu Huibin. A gradient representation for generalized Birkhoff system. J of Dynam. and Control, 2012, 10(4): 289-292 (in Chinese))
    23 梅凤翔, 吴惠彬. 广义Hamilton 系统与梯度系统. 中国科学: 物理学力学天文学, 2013, 43(4): 538-540 (Mei Fengxiang, Wu Huibin. Generalized Hamilton system and gradient system. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(4): 538-540 (in Chinese))
    24 高为炳. 运动稳定性基础. 北京: 高等教育出版社, 1989 (Gao Weibing. Foundations of Stability of Motion. Beijing: Higher Education Press, 1987 (in Chinese))
    25王照林. 运动稳定性及其应用. 北京: 高等教育出版社, 1992 (Wang Zhaolin. Stability of Motion and Its Applications. Beijing: Higher Education Press, 1992 (in Chinese))
    26 梅凤翔, 史荣昌, 张永发等. 约束力学系统的运动稳定性. 北京: 北京理工大学出版社, 1997 (Mei Fengxiang, Shi Rongchang, Zhang Yongfa, et al. Stability of Constrained Mechanical Systems. Beijing: Beijing Institute of Technology Press, 1997 (in Chinese))
    27 Jiang WA, Luo SK. Stability for manifolds of equilibrium states of generalized Hamiltonian system. Meccanica, 2012, 47: 379-383
    28 Luo SK, He JM, Xu YL. Fractional Birkhoffian method for equilibrium stability of dynamical systems. Inter J of Non-Linear Mech,2016, 78: 105-111
    29 Novoselov VS. Variational Methods in Mechanics. Leningrad: LGU Press, 1966 (in Russian)
    30 梅风翔. 非完整系统力学基础. 北京: 北京工业学院出版社, 1985 (Mei Fengxiang. Foundations of Mechanics of Nonholonomic Systems. Beijing: Beijing Institute of Technology Press, 1985 (in Chinese))
  • Related Articles

    [1]Fu Junjian, Li Shuaihu, Li Hao, Gao Liang, Zhou Xiangman, Tian Qihua. STRUCTURAL ELASTOGRAPHY METHOD BASED ON TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1331-1340. DOI: 10.6052/0459-1879-21-672
    [2]Hu Jun, Kang Zhan. TOPOLOGY OPTIMIZATION OF PIEZOELECTRIC ACTUATOR CONSIDERING CONTROLLABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1073-1081. DOI: 10.6052/0459-1879-19-012
    [3]Wang Bo, Zhou Yan, Zhou Yiming. MULTIPLE DESIGNS APPROACH FOR CONTINUUM TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 984-993. DOI: 10.6052/0459-1879-15-441
    [4]Su Wenzheng, Zhang Yongcun, Liu Shutian. TOPOLOGY OPTIMIZATION FOR GEOMETRIC STABILITY OF STRUCTURES WITH COMPENSATION DISPLACEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 214-222. DOI: 10.6052/0459-1879-12-295
    [5]Shiping Sun, Weihong Zhang. Topology optimal design of thermo-elastic structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 878-887. DOI: 10.6052/0459-1879-2009-6-2007-439
    [6]Tong Gao, Weihong Zhang, Jihong Zhu. Structural topology optimization under inertial loads[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 530-541. DOI: 10.6052/0459-1879-2009-4-2008-326
    [7]Jianhua Rong, Qingquan Liang, Duansheng Yang. A level set method for structural topology optimization based on topology random mutations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 796-803. DOI: 10.6052/0459-1879-2007-6-2007-191
    [8]Yunkang Sui, Hongling Ye, Xirong Peng, Xuesheng Zhang. The ICM method for continuum structural topology optimization with condensation of stress constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 554-563. DOI: 10.6052/0459-1879-2007-4-2006-043
    [9]Jianhua Rong. An improved level set method for structural topology optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(2): 253-260. DOI: 10.6052/0459-1879-2007-2-2006-135
    [10]TOPOLOGY OPTIMIZATION OF TRUSS STRUCTURES BASED ON RELIABILITY 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 277-284. DOI: 10.6052/0459-1879-1998-3-1995-127

Catalog

    Article Metrics

    Article views (1293) PDF downloads (568) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return