EI、Scopus 收录
中文核心期刊
Zhang Shuhai. THE COMPARISON OF WEIGHTED COMPACT SCHEMES AND WENO SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 336-347. DOI: 10.6052/0459-1879-15-190
Citation: Zhang Shuhai. THE COMPARISON OF WEIGHTED COMPACT SCHEMES AND WENO SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 336-347. DOI: 10.6052/0459-1879-15-190

THE COMPARISON OF WEIGHTED COMPACT SCHEMES AND WENO SCHEME

  • Received Date: May 20, 2015
  • Revised Date: August 25, 2015
  • Linear compact scheme and weighted essentially non-oscillatory(WENO) scheme are two typical high order numerical schemes.They have their own merits and drawbacks.Linear compact scheme has high order accuracy order, high resolution and low dissipation, which is a nice numerical scheme for multi-scale flow.However, it can not compute the flow with strong shock wave.WENO scheme is a robust high order shock capturing scheme.But the dissipation is high.The resolution for short wave is not ideal.In recent years, a series of weighted compact schemes were developed by the combination of linear compact scheme and WENO scheme.In this paper, we systematically compare the properties of weighted compact schemes and WENO scheme including the construction, the capability to capture strong shock wave, the resolution, the convergence and paralleling efficiency.Our study shows that weighted compact schemes have no obvious superiority in the computation of aerodynamics to WENO scheme.
  • 1 Harten A. High resolution schemes for hyperbolic conservative laws. Journal of Computational Physics, 1983, 49:357-393
    2 Harten A, Engquist B, Osher S, et al. Uniformly high order essentially non-oscillatory schemes, Ⅲ. Journal of Computational Physics, 1987, 71:231-303
    3 Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994, 115:200-212
    4 Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126:202-228
    5 张涵信. 差分计算中激波上、下游解出现波动的探讨. 空气动力学报,1984, 1:12-19(Zhang Hanxin. The exploration of the spatial oscillations in finite difference solutions for Navier-Stokes shocks. Acta Aerodynamica Sinica, 1984, 1:12-19(in Chinese))
    6 张涵信. 无波动、无自由参数的耗散差分格式. 空气动力学报, 1988, 6(3):143-165(Zhang Hanxin. Non-oscillatory and nonfree-parameter dissipation difference scheme. Acta Aerodynamica Sinica, 1988, 6(3):143-165(in Chinese))
    7 张涵信,贺国宏,张蕾. 高阶精度差分求解气动方程的几个问题. 空气动力学学报,1993, 11(4):347-356(Zhang Hanxin, He Guohong, Zhang Lei. Several problems in numerical solution of aerodynamic equations with high order numerical schemes. Acta Aerodynamica Sinica, 1993, 11(4):347-356(in Chinese))
    8 张涵信,庄逢甘. 关于建立高阶精度差分格式的问题. 第八届全国计算流体力学会议文集,1996:75-88(Zhang Hanxin, Zhuang Fenggan. On the construction of high order accuracy difference schemes. The Eighth National Computational Fluid Dynamics Conference Corpus, 1996:75-88(in Chinese))
    9 贺国宏. 三阶ENN 格式及其在高超声速粘性复杂流场求解中的应用.[博士论文]. 绵阳:中国空气动力学研究与发展中心气动中心,1994(He Guohong. Third-order ENN scheme and its application to the calculation of complex hypersonic viscous flows.[PhD Thesis]. Mianyang:CARDC, 1994(in Chinese))
    10 Fu DX, Ma Y. A high order accurate difference scheme for complex flow fields. Journal of Computational Physics, 1997, 134:1-15
    11 Ma Y, Fu DX. Fourth order accurate compact scheme with group velocity control. Science in China, 2001, 44:1197-1204
    12 马延文,傅德薰. 计算空气动力学中一个新的激波捕捉法——耗散比拟法. 中国科学,1992, 22(3):263-271(Ma Yanwen,Fu Dexun. Diffusion analogy and shock capturing for solving the aerodynamic equations. Science in China Ser A, 1992, 22(3):263-271(in Chinese))
    13 马延文,傅德薰. 群速度直接控制四阶迎风紧致格式. 中国科学(A 辑),2001, 31(6):554-561(Ma Yanwen,Fu Dexun. Fourthorder upwind compact scheme through direct control group velocity. Science in China Ser A, 2001, 31(6):554-561(in Chinese))
    14 傅德薰,马延文,李新亮等. 可压缩湍流直接数值模拟. 北京:科学出版社, 2009(Fu Dexun, Ma Yanwen, Li Xinliang, et al. Direct Numerical Simulation for Compressible Turbulence. Beijing:Beijing Science Press, 2009(in Chinese))
    15 沈孟育,牛晓玲,张志斌. 满足抑制波动原则的广义紧致格式的特性及应用. 应用力学学报, 2003, 20(2):12-18(Shen Mengyu, Niu Xiaoling, Zhang Zhibin. The properties and applications of the generalized compact scheme satisfying the principle about suppression of the oscillations. Chinese Journal of Applied Mechanics, 2003, 20(2):12-18(in Chinese))
    16 Zhang ZC, Li HD, Shen MY. Space-time conservation schemes for 3-D Euler equations. In:Proceeding Seventh International Symp on CFD, Beijing, 1997, 259-262
    17 Lele SK. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics,1992, 103:16-42
    18 Deng X,Zhang H. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2000, 165:22-44
    19 Zhang SH, Jiang SF, Shu CW. Development of nonlinear weighted compact schemes with increasingly higher order accuracy. Journal of Computational Physics, 2008, 227:7294-7321
    20 Liu XL, Zhang SH, Zhang HX, et al. A new class of central compact schemes with spectral-like resolution I:Linear schemes. Journal of Computational Physics, 2013, 248:235-256
    21 Liu XL, Zhang SH, Zhang HX, et al. A new class of central compact schemes with spectral-like resolution Ⅱ:Hybrid weighted nonlinear schemes. Journal of Computational Physics,2015, 284:133-154
    22 Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes:Achieving optimal order near critical points. Journal of Computational Physics, 2005, 207:542-567
    23 Pirozzoli S, On the spectral properties of shock-capturing Schemes. Journal of Computational Physics,2006, 219:489-497
    24 涂国华,邓小刚,毛枚良. 5 阶非线性WCNS 和WENO 差分格式品皮特性比较. 空气动力学学报,2012, 30:709-712(Tu Guohua, Deng Xiaogang, Mao Meiliang. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes. ACTA Aerodynamica Sinica,2012, 30:709-712(in Chinese))
    25 Zhang SH, Shu CW. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. Journal of Scientific Computing, 2007, 31 Nos. 1/2:273-305
    26 Zhang SH, Jiang SF, Shu CW. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes. Journal of Scientific Computing, 2011, 47:216-238
    27 李虎,张树海. 可压缩各向同性衰减湍流直接数值模拟研究. 力学学报, 2012, 44(4):673-686(Li Hu, Zhang Shuhai. Direct numerical simulation of decaying compressible isotropic turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):673-686(in Chinese))
    28 Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008, 227:3101-3211
    29 Hu XY, Wang Q, Adams NA. An adaptive central-upwind weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2010, 229:8952-8965
    30 Castro M, Costa B, Don WS. High order weighted essentially nonoscillatory WENO-Z schemes for hyperbolic conservation laws. Journal of Computational Physics, 2011, 230:1766-1792
  • Cited by

    Periodical cited type(3)

    1. 武从海 ,李虎 ,刘旭亮 ,罗勇 ,张树海 . 7阶WENO-S格式的计算效率研究. 力学学报. 2023(01): 239-253 . 本站查看
    2. 钟巍,贾雷明,王澍霏,田宙. 一类高效率高分辨率加映射的WENO格式及其在复杂流动问题数值模拟中的应用. 力学学报. 2022(11): 3010-3031 . 本站查看
    3. 栗建桥,马天宝,宁建国. 爆炸对自然磁场干扰机理. 力学学报. 2018(05): 1206-1218 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (971) PDF downloads (747) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return