Citation: | Gong Wuqi, Jia Bobo, Xi Guang. AN EXPERIMENTAL STUDY ON THE INFLUENCE OF THE PHASE DIFFERENCE ON THE MEAN THRUST OF TWO PLUNGING WINGS IN TANDEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1017-1025. DOI: 10.6052/0459-1879-14-378 |
Usherwood JR, Lehmann FO. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Journal of The Royal Society Interface, 2008, 5(28): 1303-1307
|
Lehmann FO. When wings touch wakes: Understanding locomotor force control by wake wing interference in insect wings. Journal of Experimental Biology, 2008, 211(2): 224-233
|
Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA. Optimal thrust development in oscillating foils with application to fish propulsion. Journal of Fluids and Structures, 1993, 7(2): 205-224
|
Hall KC, Hall SR. Minimum induced power requirements for flapping flight. Journal of Fluid Mechanics, 1996, 323(25): 285-315
|
Tuncer IH, Platzer MF. Thrust generation due to airfoil flapping. AIAA Journal, 1996, 34(2): 324-331
|
Streitlien K, Triantafyllou GS, Striantafyllou MS. Efficient foil propulsion through vortex control. AIAA Journal, 1996, 34(11): 2315-2319
|
Jones KD, Platzer MF. Numerical computation of flapping-wing propulsion and power extraction. AIAA Paper, 1997, 97: 826
|
Fenercioglu I, Cetiner O. Categorization of flow structures around a pitching and plunging airfoil. Journal of Fluids and Structures, 2012, 31: 92-102
|
Lian Y, Broering T, Hord K, et al. The characterization of tandem and corrugated wings. Progress in Aerospace Sciences, 2014, 65: 41-69
|
Knoller R. Die Gesetze des Luftwiderstandes. Flug-und Motortechnik (Wien). 1909, 3(21): 1-7
|
Betz A. Ein Beitrag zur Erklaerung Segelfluges. Zeitschrift f" ur Flugtechnik und Motorluftschiffahrt, 1912, 3: 269-272
|
Von K. General Aerodynamic Theory. Perfect fluids. Aerodynamic Theory, 1963, 2: 328
|
Bohl DG, Koochesfahani MM. MTV measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. Journal of Fluid Mechanics, 2009, 620: 63-88
|
Ramamurti R, Sandberg W. Simulation of flow about flapping airfoils using finite element incompressible flow solver. AIAA Journal, 2001, 39(2): 253-260
|
Koochesfahani MM. Vortical patterns in the wake of an oscillating airfoil. AIAA Journal, 1989, 27(9): 1200-1205
|
Broering TM, Lian Y, Henshaw W. Numerical investigation of energy extraction in a tandem flapping wing configuration. AIAA Journal, 2012, 50(11): 2295-2307
|
Broering TM, Lian Y, Henshaw W. Numerical study of two flapping airfoils in tandem configuration. In: Proc. of 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010
|
Broering TM, Lian Y. The effect of phase angle and wing spacing on tandem flapping wings. Acta Mechanica Sinica, 2012, 28(6): 1557-1571
|
Yilmaz SB, Sahin M, Unal MF. Thrust enhancement of flapping wings in tandem and biplane configurations by pure plunging motion. Bulletin of the American Physical Society, 2012, 1: 26009
|
Raffel M. Particle Image Velocimetry: A Practical Guide. Springer, 2007: 16
|
Anderson JM, Streitlien K, Barrett DS, et al. Oscillating foils of high propulsive efficiency. Journal of Fluid Mechanics, 1998, 360(1): 41-72
|
Platzer MF, Jones KD, Young J, et al. Flapping wing aerodynamics: Progress and challenges. AIAA Journal, 2008, 46(9): 2136-2149
|
Jones KD, Dohring CM, Platzer MF. Experimental and computational investigation of the Knoller-Betz effect. AIAA Journal, 1998, 36(7): 1240-1246
|
Zhong H, Lee C, Su Z, et al. Experimental investigation of freely falling thin disks. Part 1. The flow structures and Reynolds number effects on the zigzag motion. Journal of Fluid Mechanics, 2013, 716: 228-250
|
Lee C, Su Z, Zhong H, et al. Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral. Journal of Fluid Mechanics, 2013, 732: 77-104
|
Zhong H, Chen S, Lee C. Experimental study of freely falling thin disks: Transition from planar zigzag to spiral. Physics of Fluids, 2011, 23(1): 11702
|
Maybury WJ, Lehmann FO. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Journal of Experimental Biology, 2004, 207(26): 4707-4726
|
Hover FS, Haugsdal O, Triantafyllou MS. Effect of angle of attack profiles in flapping foil propulsion. Journal of Fluids and Structures, 2004, 19(1): 37-47
|
Xiao Q, Liao W. Numerical investigation of angle of attack profile on propulsion performance of an oscillating foil. Computers & Fluids, 2010, 39(8): 1366-1380
|
[1] | Wang Jiahui, Zou Lin, Zhang Yuchen, Miao Yabo, Xu Hanbin. NUMERICAL STUDY ON THE AERODYNAMIC PERFORMANCE OF THE WAVY LEADING- EDGE BLADE UNDER ZERO-NET-MASS-FLUX JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2865-2877. DOI: 10.6052/0459-1879-24-203 |
[2] | Li Shuai, Jiang Zhenhua, Zhang Shan, Yin Tong, Yan Chao. INVESTIGATION ON THE HEAT FLUX REDUCTION CHARACTERISTICS OF THE LOCAL BULGES IN THE V-SHAPED BLUNT LEADING EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 915-927. DOI: 10.6052/0459-1879-23-409 |
[3] | Guo Shuaiqi, Liu Wen, Zhang Chen’an, Wang Famin. DESIGN AND OPTIMIZATION FOR HYPERSONIC CONE-DERIVED WAVERIDER WITH BLUNTED LEADING-EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1414-1428. DOI: 10.6052/0459-1879-21-611 |
[4] | Wang Jun, Li Zhufei, Zhang Zhiyu, Yang Jiming. EFFECTS OF GEOMETRY PARAMETERS ON AEROTHERMAL HEATING LOADS OF V-SHAPED BLUNT LEADING EDGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3274-3283. DOI: 10.6052/0459-1879-21-448 |
[5] | Zhang Qing, Ye Zhengyin. COMPUTATIONAL INVESTIGATIONS FOR AERODYNAMIC PERFORMANCE OF BIO-INSPIRED DELTA-WING BASED ON SWIFT-WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 373-385. DOI: 10.6052/0459-1879-20-265 |
[6] | Liu Chuanzhen, Bai Peng, Wang Jifei, Liu Qiang. OSCULATING-CONE WAVERIDER DESIGN BY CUSTOMIZING THE PLANFORM SHAPE OF LEADING EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 991-997. DOI: 10.6052/0459-1879-18-368 |
[7] | Li Guangli, Cui Kai, Xiao Yao, Xu Yingzhou. LEADING EDGE OPTIMIZATION AND PARAMETER ANALYSIS OF HIGH PRESSURE CAPTURING WINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 877-885. DOI: 10.6052/0459-1879-16-036 |
[8] | Hu Shouchao, Cui Kai, Li Guangli, Xiao Yao, Situ Ming. OPTIMIZATION AND ANALYSIS OF THE LEADING EDGE SHAPE FOR HYPERSONIC AIRPLANES BASED ON DOE METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 290-299. DOI: 10.6052/0459-1879-15-231 |
[9] | Wang Qing, Zhao Qijun, Zhao Guoqing. PIV EXPERIMENTS ON FLOWFIELD CHARACTERISTICS OF ROTOR AIRFOIL DYNAMIC STALL AND MODIFICATIONS OF L-B MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 631-635. DOI: 10.6052/0459-1879-13-389 |
[10] | Study on some breakdown forms and characteristics of leading edge vortex over delta wings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 106-111. DOI: 10.6052/0459-1879-2006-1-2004-126 |