Citation: | Ding Yuanyuan, Wang Shilong, Zheng Zhijun, Yang Liming, Yu Jilin. ANTI-BLAST ANALYSIS OF CELLULAR SACRIFICIAL CLADDING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833. DOI: 10.6052/0459-1879-14-187 |
Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading Part I — analytical studies. International Journal of Impact Engineering, 2000, 24(9): 957-973
|
Karagiozova D, Langdon GS, Nurick GN. Blast attenuation in Cymat foam core sacrificial claddings. International of Journal of Mechanical Sciences, 2010, 52(5): 758-776
|
Liu YD, Yu JL, Zheng ZJ, et al. A numerical study on the rate sensitivity of cellular metal. International Journal of Solids and Structures, 2009, 46 (22-23): 3988-3998
|
Reid SR, Peng C. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering, 1997, 19(5-6): 531-570
|
Harrigan JJ, Reid SR, Peng C. Inertia effects in impact energy absorbing materials and structures. International Journal of Impact Engineering, 1999, 22(9-10): 955-979
|
Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅱ — 'shock' theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230
|
Harrigan JJ, Reid SR, Tan PJ, et al. High rate crushing of wood along the grain. International of Journal of Mechanical Sciences, 2005, 47(4-5): 521- 544
|
Zheng ZJ, Liu YD, Yu JL, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes. International Journal of Impact Engineering, 2012, 42: 66-79
|
Wang LL, Yang LM, Ding YY. On the energy conservation and critical velocities for the propagation of a "steady-shock" wave in a bar of cellular material. Acta Mechanica Sinica, 2013, 29(3): 420-428
|
Zheng ZJ, Yu JL, Wang CF, et al. Dynamic crushing of cellular materials: A unified framework of plastic shock wave model. International Journal of Impact Engineering, 2013, 53: 29-43
|
Wang LL, Ding YY, Yang LM. Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagation measurements. International Journal of Impact Engineering, 2013, 62: 48-59
|
Cooper GJ, Townend DJ, Cater SR, et al. The role of stress waves in thoracic visceral injury from blast loading: Modification of stress transmission by foams and high-density materials. Journal of Biomechanics, 1991, 24(5): 273-285
|
Ben-Dor G, Mazor G, Igra O, et al. Shock wave interaction with cellular materials. Part Ⅱ: open cell foams; experimental and numerical results. Shock Waves,1994, 3: 167-179
|
Li QM, Meng H. Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material. International Journal of Impact Engineering, 2002, 27(10): 1049-1065
|
Harrigan JJ, Reid SR, Seyed Yaghoubi A. The correct analysis of shocks in a cellular material. International Journal of Impact Engineering, 2010, 37(8): 918-927
|
Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminum foam panels. International Journal of Impact Engineering, 2002, 27(6): 593-618
|
Ma GW, Ye ZQ. Energy absorption of double-layer foam cladding for blast alleviation. International Journal of Impact Engineering, 2007, 34(2): 329-347.
|
Liao SF, Zheng ZJ, Yu JL, et al. A design guide of double-layer cellular claddings for blast alleviation. International Journal of Aerospace and Lightweight Structures, 2013, 3(1): 109-133.
|
Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge, UK. 1997
|
Zheng ZJ, Wang CF, Yu JL, et al. Dynamic stress-strain states for metal foams using a 3D cellular model. Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114
|
王长峰, 郑志军, 虞吉林. 泡沫杆撞击刚性壁的动态压溃模型. 爆炸与冲击, 2013, 33(6): 587-593. (Wang Changfeng, Zheng Zhijun, Yu Jilin. Dynamic crushing models for a foam rod striking a rigid wall. Explosion and Shock Waves, 2013, 33(6): 587-593 (in Chinese))
|
[1] | Li Zheng, Zhao Yuhao, Cui Haijian, Chen Mingfei. DYNAMIC BEHAVIOR OF ELASTIC BEAM SYSTEM COUPLED BY NONLINEAR ELEMENT WITH END[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 3023-3038. DOI: 10.6052/0459-1879-24-196 |
[2] | Gao Xiaowei, Liu Huayu, Cui Miao, Yang Kai, Lyu Jun, Peng Haifeng, Ruan Bo. GENERALIZED WEAK-FORM FREE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2741-2751. DOI: 10.6052/0459-1879-24-160 |
[3] | Like Deng, Dongdong Wang, Jiarui Wang, Junchao Wu. A GRADIENT SMOOTHING GALERKIN MESHFREE METHOD FOR THIN PLATE ANALYSIS WITH LINEAR BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702. DOI: 10.6052/0459-1879-19-004 |
[4] | Wang Siqiang, Ji Shunying. NON-LINEAR CONTACT MODEL FOR SUPER-QUADRIC ELEMENT CONSIDERING THE EQUIVALENT RADIUS OF CURVATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1081-1092. DOI: 10.6052/0459-1879-18-103 |
[5] | Tan Shujun, Hou Jian, Wu Zhigang, Du Jianming. THE PARAMETRIC VARATIONAL PRINCIPLE AND NON-LINEAR FINITE ELEMENT METHOD FOR ANALYSIS OF ASTROMESH ANTENNA STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 770-775. DOI: 10.6052/0459-1879-14-126 |
[6] | Hu Dean, Han Xu, Xiao Yihua, Yang Gang. RESEARCH DEVELOPMENTS OF SMOOTHED PARTICLE HYDRODYNAMICS METHOD AND ITS COUPLING WITH FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639-652. DOI: 10.6052/0459-1879-13-092 |
[7] | Junbo Zhang, Xikui Li. A mesh-free method based on linear complementary model for gradient plasticity continuum[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 888-897. DOI: 10.6052/0459-1879-2009-6-2008-376 |
[8] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[9] | THE CONVERGENCE PROOF OF THE PLANE RATIONAL FINITE ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 676-685. DOI: 10.6052/0459-1879-1997-6-1995-284 |
[10] | LOCAL ARC-LENGTH METHOD——A SOLUTION PROCEDURE FOR NON-LINEAR FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 116-122. DOI: 10.6052/0459-1879-1997-1-1995-205 |
1. |
齐栋梁. 超收敛光滑再生梯度无网格配点法. 力学与实践. 2024(04): 820-829 .
![]() | |
2. |
刘华雩,高效伟,范伟龙. 分区有限线法及其在复合结构热应力分析中的应用. 力学学报. 2023(06): 1394-1406 .
![]() | |
3. |
周东谟,王辉,惠步青,吴晗旭,陈航. 基于梯度有限元法的HTPB推进剂药柱结构完整性分析. 固体火箭技术. 2023(05): 695-707 .
![]() | |
4. |
胡凯,高效伟,徐兵兵,郑颖人. 多孔介质弹性问题的单元微分法. 岩土工程学报. 2023(11): 2403-2410 .
![]() | |
5. |
胡凯,高效伟,徐兵兵. 求解固体力学问题的强-弱耦合形式单元微分法. 力学学报. 2022(07): 2050-2058 .
![]() | |
6. |
傅卓佳,李明娟,习强,徐文志,刘庆国. 物理信息依赖核函数配点法的研究进展. 力学学报. 2022(12): 3352-3365 .
![]() |