EI、Scopus 收录
中文核心期刊
Ding Yuanyuan, Wang Shilong, Zheng Zhijun, Yang Liming, Yu Jilin. ANTI-BLAST ANALYSIS OF CELLULAR SACRIFICIAL CLADDING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833. DOI: 10.6052/0459-1879-14-187
Citation: Ding Yuanyuan, Wang Shilong, Zheng Zhijun, Yang Liming, Yu Jilin. ANTI-BLAST ANALYSIS OF CELLULAR SACRIFICIAL CLADDING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833. DOI: 10.6052/0459-1879-14-187

ANTI-BLAST ANALYSIS OF CELLULAR SACRIFICIAL CLADDING

Funds: The project was supported by the National Natural Science Foundation of China (11372308, 90916026).
  • Received Date: June 24, 2014
  • Revised Date: September 11, 2014
  • The behavior of a cellular sacrificial cladding for blast attenuation was studied by using 1D shock models and 3D cell-based finite element models. Based on a rate-independent, rigid-plastic hardening (R-PH) idealization, a shock model was developed and an equation governing the shock wave propagation in the sacrificial cladding was obtained. The results reveal the shock wave propagation characteristics in the sacrificial cladding. Two parameters, the attached mass and the strength of blasting load, are very important for the cellular sacrificial cladding design. Comparison of the sacrificial cladding structure designs based on the rigid-perfectly plastic-locking (R-PP-L) model and the R-PH model was presented and the applicable conditions of the two shock models were given. Finally, a cell-based finite element model using 3D Voronoi technology was employed to verify the design criteria of the cellular sacrificial cladding structure based on the R-PH model.
  • Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading Part I — analytical studies. International Journal of Impact Engineering, 2000, 24(9): 957-973
    Karagiozova D, Langdon GS, Nurick GN. Blast attenuation in Cymat foam core sacrificial claddings. International of Journal of Mechanical Sciences, 2010, 52(5): 758-776
    Liu YD, Yu JL, Zheng ZJ, et al. A numerical study on the rate sensitivity of cellular metal. International Journal of Solids and Structures, 2009, 46 (22-23): 3988-3998
    Reid SR, Peng C. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering, 1997, 19(5-6): 531-570
    Harrigan JJ, Reid SR, Peng C. Inertia effects in impact energy absorbing materials and structures. International Journal of Impact Engineering, 1999, 22(9-10): 955-979
    Tan PJ, Reid SR, Harrigan JJ, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅱ — 'shock' theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230
    Harrigan JJ, Reid SR, Tan PJ, et al. High rate crushing of wood along the grain. International of Journal of Mechanical Sciences, 2005, 47(4-5): 521- 544
    Zheng ZJ, Liu YD, Yu JL, et al. Dynamic crushing of cellular materials: Continuum-based wave models for the transitional and shock modes. International Journal of Impact Engineering, 2012, 42: 66-79
    Wang LL, Yang LM, Ding YY. On the energy conservation and critical velocities for the propagation of a "steady-shock" wave in a bar of cellular material. Acta Mechanica Sinica, 2013, 29(3): 420-428
    Zheng ZJ, Yu JL, Wang CF, et al. Dynamic crushing of cellular materials: A unified framework of plastic shock wave model. International Journal of Impact Engineering, 2013, 53: 29-43
    Wang LL, Ding YY, Yang LM. Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagation measurements. International Journal of Impact Engineering, 2013, 62: 48-59
    Cooper GJ, Townend DJ, Cater SR, et al. The role of stress waves in thoracic visceral injury from blast loading: Modification of stress transmission by foams and high-density materials. Journal of Biomechanics, 1991, 24(5): 273-285
    Ben-Dor G, Mazor G, Igra O, et al. Shock wave interaction with cellular materials. Part Ⅱ: open cell foams; experimental and numerical results. Shock Waves,1994, 3: 167-179
    Li QM, Meng H. Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material. International Journal of Impact Engineering, 2002, 27(10): 1049-1065
    Harrigan JJ, Reid SR, Seyed Yaghoubi A. The correct analysis of shocks in a cellular material. International Journal of Impact Engineering, 2010, 37(8): 918-927
    Hanssen AG, Enstock L, Langseth M. Close-range blast loading of aluminum foam panels. International Journal of Impact Engineering, 2002, 27(6): 593-618
    Ma GW, Ye ZQ. Energy absorption of double-layer foam cladding for blast alleviation. International Journal of Impact Engineering, 2007, 34(2): 329-347.
    Liao SF, Zheng ZJ, Yu JL, et al. A design guide of double-layer cellular claddings for blast alleviation. International Journal of Aerospace and Lightweight Structures, 2013, 3(1): 109-133.
    Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge, UK. 1997
    Zheng ZJ, Wang CF, Yu JL, et al. Dynamic stress-strain states for metal foams using a 3D cellular model. Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114
    王长峰, 郑志军, 虞吉林. 泡沫杆撞击刚性壁的动态压溃模型. 爆炸与冲击, 2013, 33(6): 587-593. (Wang Changfeng, Zheng Zhijun, Yu Jilin. Dynamic crushing models for a foam rod striking a rigid wall. Explosion and Shock Waves, 2013, 33(6): 587-593 (in Chinese))
  • Related Articles

    [1]Li Zheng, Zhao Yuhao, Cui Haijian, Chen Mingfei. DYNAMIC BEHAVIOR OF ELASTIC BEAM SYSTEM COUPLED BY NONLINEAR ELEMENT WITH END[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 3023-3038. DOI: 10.6052/0459-1879-24-196
    [2]Gao Xiaowei, Liu Huayu, Cui Miao, Yang Kai, Lyu Jun, Peng Haifeng, Ruan Bo. GENERALIZED WEAK-FORM FREE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2741-2751. DOI: 10.6052/0459-1879-24-160
    [3]Like Deng, Dongdong Wang, Jiarui Wang, Junchao Wu. A GRADIENT SMOOTHING GALERKIN MESHFREE METHOD FOR THIN PLATE ANALYSIS WITH LINEAR BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702. DOI: 10.6052/0459-1879-19-004
    [4]Wang Siqiang, Ji Shunying. NON-LINEAR CONTACT MODEL FOR SUPER-QUADRIC ELEMENT CONSIDERING THE EQUIVALENT RADIUS OF CURVATURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1081-1092. DOI: 10.6052/0459-1879-18-103
    [5]Tan Shujun, Hou Jian, Wu Zhigang, Du Jianming. THE PARAMETRIC VARATIONAL PRINCIPLE AND NON-LINEAR FINITE ELEMENT METHOD FOR ANALYSIS OF ASTROMESH ANTENNA STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 770-775. DOI: 10.6052/0459-1879-14-126
    [6]Hu Dean, Han Xu, Xiao Yihua, Yang Gang. RESEARCH DEVELOPMENTS OF SMOOTHED PARTICLE HYDRODYNAMICS METHOD AND ITS COUPLING WITH FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639-652. DOI: 10.6052/0459-1879-13-092
    [7]Junbo Zhang, Xikui Li. A mesh-free method based on linear complementary model for gradient plasticity continuum[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 888-897. DOI: 10.6052/0459-1879-2009-6-2008-376
    [8]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [9]THE CONVERGENCE PROOF OF THE PLANE RATIONAL FINITE ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 676-685. DOI: 10.6052/0459-1879-1997-6-1995-284
    [10]LOCAL ARC-LENGTH METHOD——A SOLUTION PROCEDURE FOR NON-LINEAR FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 116-122. DOI: 10.6052/0459-1879-1997-1-1995-205
  • Cited by

    Periodical cited type(6)

    1. 齐栋梁. 超收敛光滑再生梯度无网格配点法. 力学与实践. 2024(04): 820-829 .
    2. 刘华雩,高效伟,范伟龙. 分区有限线法及其在复合结构热应力分析中的应用. 力学学报. 2023(06): 1394-1406 . 本站查看
    3. 周东谟,王辉,惠步青,吴晗旭,陈航. 基于梯度有限元法的HTPB推进剂药柱结构完整性分析. 固体火箭技术. 2023(05): 695-707 .
    4. 胡凯,高效伟,徐兵兵,郑颖人. 多孔介质弹性问题的单元微分法. 岩土工程学报. 2023(11): 2403-2410 .
    5. 胡凯,高效伟,徐兵兵. 求解固体力学问题的强-弱耦合形式单元微分法. 力学学报. 2022(07): 2050-2058 . 本站查看
    6. 傅卓佳,李明娟,习强,徐文志,刘庆国. 物理信息依赖核函数配点法的研究进展. 力学学报. 2022(12): 3352-3365 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1686) PDF downloads (1269) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return