Citation: | Li Nian, Chen Puhui. CONTINUUM DAMAGE MECHANICS MODEL FOR LOW-VELOCITY IMPACT DAMAGE ANALYSIS OF COMPOSITE LAMINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 458-470. DOI: 10.6052/0459-1879-14-169 |
沈真, 刘峰. 新的韧性复合材料评定技术, 623S-200101-114, 中国飞机强度研究所, 2001 (Shen Zhen, Liu Feng. New toughness composite evaluation technology,623S-200101-114, Aircraft Strength Institute of China, 2001 (in Chinese))
|
陈普会, 沈真, 聂宏. 复合材料层压板冲击后压缩剩余强度的统计分析与可靠性评估. 航空学报, 2004, 25(6): 573-576 (Chen Puhui, Shen Zhen, Nie Hong. Statistical analysis of post impact compression strength of a composite laminate and reliability evaluation. Acta Aeronautica et Astronautica Sinica, 2004, 25(6): 573-576 (in Chinese))
|
Bouvet C, Castanie B, Bizeul M, et al. Low velocity impact modelling in laminate composite panels with discrete interface elements. International Journal of Solids and Structures, 2009, 46: 2809-2821
|
Davila CG, Camanho PP, Rose CA. Failure criteria for FRP laminates. Journal of Composite Materials, 2005, 39(4): 323-345
|
Petit S, Bouvet C, Bergerot A, et al. Impact and compression after impact experimental study of a composite laminate with a cork thermal shield. Composite Science and Technology, 2007, 67: 3286-3299
|
Puck A, Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Composite Science and Technology, 1998, 58(10): 1045-1067
|
Hinton MJ, Kaddour AS, Soden PD. A comparison of the predictive capabilities of current failure theories for composite laminates judged against experimental evidence. Composite Science and Technology, 2002, 62: 1725-1797
|
Soden PD, Kaddour AS, Hinton MJ. Recommendations for designersand researchers resulting from the world-wide failure exercise. Composite Science and Technology, 2004, 64: 589-604
|
Faggiani A, Falzon BG. Predicting low-velocity impact damage on a stiffened composite panel. Composites: Part A, 2010, 41: 737-749
|
Shi Y, Swait T, Soutis C. Modelling damage evolution in composite laminates subjected to low velocity impact. Composite Structures, 2012, 94: 2902-2913
|
Matzenmiller A, Lubliner J, Taylor RL. A constitutive model for anisotropic damage in fiber composite. Mech Mater, 1995, 20(2): 125-152
|
Hwang TK, Hong CS, Kim CG. Probabilistic deformation and strength prediction for a filament wound pressure vessel. Composites: Part B, 2003, 34: 481-497
|
Kim EH, Rim MS, Lee I, et al. Composite damage model based on continuum damage mechanics and low velocity impact analysis of composite plates. Composite Structures, 2013, 95: 123-134
|
Lopes CS, Camanho PP, Gurdal Z, et al. Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations. Composite Science and Technology, 2009, 69(7-8): 937-947
|
Falzon BG, Apruzzese P. Numerical analysis of interlaminar failure mechanisms in composite structures. Part I: FE implementation. Composite Structures, 2011, 93(2): 1039-1046
|
Falzon B G, Apruzzese P. Numerical analysis of interlaminar failure mechanisms in composite syructures. Part II: Applications. Composite Structures, 2011, 93(2): 1047-1053
|
姚辽军, 赵美英, 万小朋. 基于CDM-CZM的复合材料补片补强参数分析. 航空学报, 2012, 33(4): 666-671 (Yao Liaojun, Zhao Meiying, Wan Xiaopeng. Parameter analysis of composite laminates with patched reinforcement Based on CDM-CZM. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 666-671 (in Chinese))
|
Linde P, Pleitner J, de Boer H, et al. Modelling and simulation of fibre metal laminates. ABAQUS Users Conference, Boston, Dassault Systemes Company, 2004: 421-439
|
吴义韬, 姚卫星, 吴富强. 基于应变能耗散的复合材料层合板面内缺口强度分析CDM模型. 复合材料学报, 2014, 31(4): 1013-1021 (Wu Yitao, Yao Weixing, Wu Fuqiang. Energy-based CDM model for analyzing intralaminar strength of notched composite laminates. Acta Materiae Compositae Sinica, 2014, 31(4): 1013-1021 (in Chinese))
|
Caprino G. Residual strength prediction of impacted CFRP laminates. Journal of Composite Materials, 1984, 18: 508-518
|
朱炜垚, 许希武. 复合材料层合板低速冲击损伤的有限元模拟. 复合材料学报, 2010, 27(6): 200-207 (Zhu Weiyao, Xu Xiwu. Finite element simulation of low velocity impact damage on composite laminates. Acta Materiae Compositae Sinica, 2010, 27(6): 200-207 (in Chinese))
|
Aymerich F, Dore F, Priolo P. Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Composites Science and Technology, 2008, 68: 2383-2390
|
Turon A, Davila CG, Camanho PP, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Engineering Fracture Mechanics, 2007, 74(10): 1665-1682
|
Donadon MV, Iannucci L, Falzon BG, et al. A progressive failure model for composite laminates subjected to low velocity impact damage. Composite and Structures, 2008, 86: 1232-1252
|
屈天骄, 郑锡涛, 范献银. 复合材料层合板低速冲击损伤影响因素分析. 航空材料学报, 2011, 31(6): 81-86 (Qu Tianjiao, Zheng Xitao, Fan Xianyin. Exploration of several influence factors of low-velocity impact damage on composite laminates. Journal of Aeronautical Materials, 2011, 31(6): 81-86 (in Chinese))
|
Gonzalez EV, Maimi P, Camanho PP, et al. Effects of ply clustering in laminated composite plates under low-velocity impact loading. Composites Science and Technology, 2011, 71: 805-817
|
刘新东, 郝继平. 连续介质损伤力学. 北京:国防工业出版社,2011 (Liu Xindong, Hao Jiping. Continuum Damage Mechanics. Beijing: National Defence Industry Press, 2011 (in Chinese))
|
Deuschle HM. 3D failure analysis of UD fibre reinforced composites: Puck's theory within FEA. [PhD Thesis]. Germany: University Stuttgart, 2010
|
Wiegand J, Petrinic N, Elliott B. An algorithm for determination of the fracture angle for the three-dimensional Puck matrix failure criterion for UD composites. Composite Science and Technology, 2008, 68: 2511-2517
|
Lapczyk I, Hurtado J. A progressive damage modeling in fiber-reinforced materials. Composites Part A, 2007, 38: 2333-2341
|
Mitrevski T, Marshall IH, Thomson R. The influence of impactor shape on the damage to composite laminates. Composite Structures, 2006, 76: 116-122
|
Choi HY, Downs RJ, Chang FK. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact, part I. Journal of Composite Materials, 1991, 25(8): 992-1011
|
Choi HY, Downs RJ, Chang FK. A new approach toward understanding damage mechanisms and mechanics of laminated composites due to low-velocity impact, part II. Journal of Composite Materials, 1991, 25(8): 1012-1038
|
Raimondo L, Iannucci L, Robinson P, et al. A progres-sive failure model for mesh size independent FE analysis of composite laminates subject to low-velocity impact damage. Composite Science and Technology, 2012, 72: 624-632
|
Gonzalez EV, Maimi P, Camanho PP, et al. Simulation of drop-weight impact and compression after impact tests on composite laminates. Composite Structures, 2012, 94: 3364-3378
|
Feng D, Aymerich F. Finite element modelling of damage induced by low-velocity impact on composite laminates. Composite Structures, 2014, 108: 161-171
|
王一飞, 张晓晶, 汪海. 复合材料层压板低速冲击响应与损伤参数关系研究. 固体力学学报, 2013, 34(1): 63-72 (Wang Yifei, Zhang Xiaojing, Wang Hai. Low-velocity impact response of composite laminate and its relationship with damage parameters. Chinese Journal of Solid Mechanics, 2013, 34(1): 63-72 (in Chinese))
|
Nairn JA. Matrix Microcracking in Composites. Polymer Matrix Composites, 2000, 2: 403-432
|
Talreja R, Singh CV. Damage and Failure of Composite Materials. Cambridge: Cambridge University Press, 2012
|
Talreja R. Fatigue of Composite Materials. Lancaster, Pa: Technomic, 1987
|
[1] | Huang Kai, Li Mingpeng. RESEARCH ON THE STRAIN RATE DEPENDENCE OF PHASE TRANSFORMATION PATTERN EVOLUTION IN NITI ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-9. DOI: 10.6052/0459-1879-25-055 |
[2] | Meng Xufei, Bai Peng, Liu Jianxia, Chen Lili, Liu Chuanzhen. WAVERIDING DEPENDENT AREA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1644-1654. DOI: 10.6052/0459-1879-23-510 |
[3] | Wei Xinyu, Sang Jianbing, Zhang Ruilin, Wang Jingyuan, Liu Baoyou. TIME-DEPENDENT MECHANICAL BEHAVIOR AND CONSTITUTIVE PARAMETER IDENTIFICATION OF CHONDROCYTES BASED ON MACHINE LEARNING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3215-3222. DOI: 10.6052/0459-1879-22-344 |
[4] | Gan Yangke, Liu Jianfei. AUTOMATIC VISCOUS BOUNDARY LAYER MESH GENERATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1029-1041. DOI: 10.6052/0459-1879-17-154 |
[5] | Yangjun Luo. Topology optimization of pressure-dependent material structures based on D-P criterion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 878-885. DOI: 10.6052/0459-1879-2011-5-lxxb2011-003 |
[6] | Shengli Xu, Gengdong Cheng. Material design of permeability coefficient based on adaptive mesh[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 238-244. DOI: 10.6052/0459-1879-2010-2-2008-730 |
[7] | Bin Ji, Wanji Chen, Jie Zhao. Elastoplastic finite element analysis of shear band with couple stress theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 192-199. DOI: 10.6052/0459-1879-2009-2-2007-416 |
[8] | A universal numerical discretization method on different meshes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 393-400. DOI: 10.6052/0459-1879-2004-4-2003-170 |
[9] | A CONSTITUTIVE MODEL FOR NONPROPORTIONAL CYCLIC PLASTICITY WITH LOADINGPATH DEPENDENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 484-492. DOI: 10.6052/0459-1879-1999-4-1995-057 |
[10] | TEMPERATURE DEPENDENCE OF THE GRAIN BOUNDARY RELAXATION IN ALUMINIUM BICRYSTALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(1): 22-28. DOI: 10.6052/0459-1879-1993-1-1995-610 |