EI、Scopus 收录
中文核心期刊
Wang Changsheng, Qi Zhaohui, Zhang Xiangkui, Hu Ping. QUADRILATERAL 4-NODE QUASI-CONFORMING PLANE ELEMENT WITH INTERNAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 971-976. DOI: 10.6052/0459-1879-14-167
Citation: Wang Changsheng, Qi Zhaohui, Zhang Xiangkui, Hu Ping. QUADRILATERAL 4-NODE QUASI-CONFORMING PLANE ELEMENT WITH INTERNAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 971-976. DOI: 10.6052/0459-1879-14-167

QUADRILATERAL 4-NODE QUASI-CONFORMING PLANE ELEMENT WITH INTERNAL PARAMETERS

Funds: The project was supported by the Fundamental Research Funds for the Central Universities (3013-852020), the Key Project of the NSFC (10932003, 11272075,11301052, 11301045), "863" Project of China (2009AA04Z101) and "973" National Basic Research Project of China (2010CB832700).
  • Received Date: June 08, 2014
  • Revised Date: July 20, 2014
  • A 4-node quadrilateral quasi-conforming plane element with internal parameters was proposed under the framework of quasi-conforming technique. New displacement functions with internal parameters can be added to the serendipity element Q4 to construct new isoparametric element. The explicit stiffness matrix of quasi-conforming element QC6N makes it more efficient. The numerical tests and comparisons with other 4-node isoparametric elements suggest that the present elements are more accuracy and less sensitive to the mesh distortion.
  • Wilson EL, Taylor RL, Doherty WP, et al. Incompatible displacement models. In: Fenves SJ, ed. Numerical and Computer Methods in Structural Mechanics. New York: Academic Press, 1973: 43-57
    Strang WG, Fix GJ. An Analysis of the Finite Element Method. New Jersey: Prentice-Hall, 1973
    Taylor RL, Wilson E, Beresford P. A non-conforming element for stress analysis. International Journal for Numerical Methods in Engineering, 1976, 10(6): 1211-1219
    Chen XM, Cen S, Long YQ, et al. Membrane elements insensitive to distortion using the quadrilateral area coordinate method. Computers & Structures, 2004, 82: 35-54
    龙驭球,龙志飞,岑松. 新型有限元论. 北京:清华大学出版社,2004 (Long Yuqiu, Long Zhifei, Cen Song. Novel Formulation of Finite Element Method. Beijing: Tsinghua University, 2004 (in Chinese))
    唐立民,陈万吉,刘迎曦. 有限元分析中的拟协调元. 大连工学院学报,1980, 19(2): 19-35 (Tang Limin, Chen Wanji, Liu Yingxi. Quasi-conforming elements for finite element analysis. Journal of Dalian University of Technology, 1980, 19(2): 19-35 (in Chinese))
    Lomboy G, Suthasupradit S, Kim K, et al. Nonlinear formulations of a four-node quasi-conforming shell element. Archives of Computational Methods in Engineering, 2009, 16(2): 189-250
    胡平,夏阳. 拟协调元研究综述. 力学进展, 2012,42(6): 755-770 (Hu Ping, Xia Yang. Survey of quasi-conforming finite element method. Advances in Mechanics, 2012, 42(6): 755-770 (in Chinese))
    陈万吉, 唐立民. 等参拟协调元. 大连工学院学报, 1981, 20(1): 63-74 (Chen Wanji, Tang Limin. Isoparametric quasi-conforming element. Journal of Dalian University of Technology, 1981, 20(1): 63-74 (in Chinese))
    唐立民,陈万吉,周建清. 多变量拟协调平面四边形元. 计算结构力学及其应用,1988, 5(1): 1-6 (Tang Limin, Chen Wanji, Zhou Jianqing. A multi-variable quasi-conforming quadrilateral element. Computational Structural Mechanics and Applications, 1988, 5(1): 1-6 (in Chinese))
    刘红,唐立民. 带旋转自由度的拟协调平面单元. 计算结构力学及其应用,1990, 7(4): 23-31 (Liu Hong, Tang Limin. Quasi-conforming plane element with drilling degree of freedom. Computatinal Structural Mechanics and Application, 1990, 7(4): 23-31 (in Chinese))
    夏阳,胡平,唐立民. 用拟协调元直接构造平面任意四边形单元—进入有限元的禁区. 力学学报,2012, 44(5): 839-850 (Xia Yang, Hu Ping, Tang Limin. Direct formulation of quadrilateral plane element with quasi-conforming method—Into the forbidden zone of FEM. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 839-850 (in Chinese))
    刘迎曦,石广玉,唐立民. 关于有限元多余零能模式的讨论. 大连工学院学报,1980,19(3): 71-80 (Liu Yingxi, Shi Guangyu, Tang Limin. Discussion on the superfluous zero energy modes of finite elements. Journal of Dalian University of Technology, 1980,19(3): 71-80 (in Chinese))
    石钟慈,王鸣. 有限元方法. 北京:科学出版社,2010 (Shi Zhongci, Wang Ming. The Finite Element Method. Beijing: Science Press, 2010 (in Chinese))
    Lü HX, Xu SN. An effective quadrilateral plate bending element. International Journal for Numerical Methods in Engineering, 1989, 28(5): 1145-1160
    MacNeal RH, Harder RL. A proposed standard set of problems to test finite element accuracy. Finite Elements in Analysis and Design, 1985, 1: 3-20
  • Related Articles

    [1]Xia Yang, Hu Ping, Tang Limin. DIRECT FORMULATION OF QUADRILATERAL PLANE ELEMENT WITH QUASI-CONFORMING METHOD——INTO THE FORBIDDEN ZONE OF FEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 839-850. DOI: 10.6052/0459-1879-12-105
    [2]Ai Zhiyong, Cao Guojun, Cheng Yichong. ANALYTICAL LAYER-ELEMENT OF PLANE STRAIN BIOT'S CONSOLIDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 401-407. DOI: 10.6052/0459-1879-2012-2-20120224
    [3]Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198
    [4]Analyses Of Crack-Tip Fields Of Plane Piezoelectric Materials By The Hybrid Stress Finite Element Method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3): 354-358. DOI: 10.6052/0459-1879-2004-3-2003-110
    [5]Finite Element Of Elasticity With Couple-Stress Using The Analogy Between Plane Couple-Stress And Reissner/Mindlin Plate Bending[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3): 272-280. DOI: 10.6052/0459-1879-2004-3-2003-203
    [6]AN ELEMENT HARMONIC BALANCE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(6): 753-760. DOI: 10.6052/0459-1879-1999-6-1995-090
    [7]THE CONVERGENCE PROOF OF THE PLANE RATIONAL FINITE ELEMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(6): 676-685. DOI: 10.6052/0459-1879-1997-6-1995-284
    [8]FORMULAIION FOR GENERALIZED CONFORMING PLATE ELEMENT WITH FERGUSON’S SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(2): 239-244. DOI: 10.6052/0459-1879-1995-2-1995-428
    [9]GEOMETRICALLY NONLINEAR ANALYSES FOR 2-D PROBLEMS BASED ON THE INCOMPATIBLE FINITE ELEMENTS WITH INTERNAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(4): 505-513. DOI: 10.6052/0459-1879-1993-4-1995-673
    [10]ANTI-PLANE WAVE MOTION IN FINITE ELEMENT MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(2): 207-215. DOI: 10.6052/0459-1879-1992-2-1995-729
  • Cited by

    Periodical cited type(4)

    1. 张树佰 ,丁喆 ,黄垲轩 ,张严 . 基于灰狼优化算法的变截面点阵结构设计及性能优化. 力学学报. 2024(06): 1702-1712 . 本站查看
    2. 朱飞鹏,李荣杰,白鹏翔,康新. 基于光学引伸计的PLA材料拉伸性能测试. 力学季刊. 2024(04): 953-960 .
    3. 黄垲轩 ,丁喆 ,张严 ,李小白 . 高承载梯度分层点阵结构的拓扑优化设计方法. 力学学报. 2023(02): 433-444 . 本站查看
    4. 肖李军,李实,冯根柱,石高泉,宋卫东. 增材制造三维微点阵材料力学性能表征与细观优化设计研究进展. 固体力学学报. 2023(06): 718-754 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1142) PDF downloads (928) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return