EI、Scopus 收录
中文核心期刊
Zhang Weiwei, Jin Xianlong. AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 436-446. DOI: 10.6052/0459-1879-13-260
Citation: Zhang Weiwei, Jin Xianlong. AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 436-446. DOI: 10.6052/0459-1879-13-260

AN ARBITRARILY MIXED EXPLICIT-IMPLICIT ASYNCHRONOUS INTEGRATION ALGORITHM BASED ON UNIFORM DISCRETIZATION FORMAT

Funds: The project was supported by the National High Technology Research and Development Program of China (2012AA01AA307) and the National Natural Science Foundation of China (11072150,61073088).
  • Received Date: August 06, 2013
  • Revised Date: December 10, 2013
  • Dynamical finite element method requires solving system information at each time step, and the computational effort is much larger than solving the static ones. Thus, to improve computational efficiency and save computational effort is one the of the main research content in dynamics. The present paper introduces an arbitrarily mixed explicit-implicit asynchronous integration algorithm based on uniform Newmark discretization format, for the efficiently solving of the large and complex dynamic systems. The overall dynamical system can be partitioned into different parts according to the physical and mechanical properties, as well as the requirements of solution accuracy, and the system equation can be solved in multi-scale both at the space domain and time domain. According to the inherent message passing mechanisms of the explicit and implicit algorithm, a variable boundary treatment method was adopted to avoid the accumulation of errors at the asynchronous boundary. The simulation time steps were dynamically determined and corrected according to the energy balance checking, which can effectively prevent the emergence and development of the instability. Numerical example shows that the proposed algorithm can greatly reduce the consumption of computing resources while maintaining high accuracy, thus it has a high practical value.
  • Woelke P, Abboud N, Tennant D, et al. Ship impact study: Analytical approaches and finite element modeling. Shock and Vibration, 2012, 19(4): 515-525
    Xu HJ, Liu Y Q, Zhong W. Three-dimensional finite element simulation of medium thick plate metal forming and springback. Finite Elements in Analysis and Design, 2012, 51: 49-58
    Firat M, Karadeniz E, Yenice M, et al. Improving the accuracy of stamping analyses including springback deformations. Journal of Materials Engineering and Performance, 2013, 22(2): 332-337
    Behzad M, Alvandi M, Mba D, et al. A finite element-based algorithm for rubbing induced vibration prediction in rotors. Journal of Sound and Vibration, 2013, 332(21): 5523-5542
    Kacimi A E, Woodward P K, Laghrouche O, et al. Time domain 3D finite element modelling of train-induced vibration at high speed. Computers & Structures, 2013, 118:66-73.
    Kim J, Kang SJ, Kang BS. A comparative study of implicit and explicit FEM for the wrinkling prediction in the hydroforming process. The International Journal of Advanced Manufacturing Technology, 2003, 22(7-8): 547-552
    Oliver J, Huespe AE, Cante JC. An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems. Computer Methods in Applied Mechanics and Engineering, 2008, 197(21-24): 1865-1889
    Cai Y, Li G, Wang H, et al. Development of parallel explicit finite element sheet forming simulation system based on GPU architecture. Advances in Engineering Software, 2012, 45(1): 370-379
    Hadoush A, Boogaard AHVD. Efficient implicit simulation of incremental sheet forming. International Journal for Numerical Methods in Engineering, 2012, 90(5): 597-612
    李光耀,王琥,杨旭静 等. 板料冲压成形工艺与模具设计制造中的若干前沿技术. 机械工程学报, 2010, 46(10): 31-39 (Li Guangyao, Wang Hu, Yang Xujing, et al. Some new topics on process design and mould manufacture for sheet metal forming. Journal of Mechanical Engineering, 2010, 46(10): 31-39 (in Chinese))
    Noels L, Stainier L, Ponthot JP. Combined implicit/explicit algorithms for crashworthiness analysis. International Journal of Impact Engineering, 2004, 30(8-9): 1161-1177
    Noels L, Stainier L, Ponthot JP, et al. Combined implicit-explicit algorithms for non-linear structural dynamics. Revue Européenne des Éléments, 2002, 11(5): 565-591  Revue Europ" target=_blank>
    Noels L, Stainier L, Ponthot JP. Energy conserving balance of explicit time steps to combine implicit and explicit algorithms in structural dynamics. Computer Methods in Applied Mechanics and Engineering, 2006, 195(19-22): 2169-2192
    Belytschko T, Mullen R. Stability of explicit-implicit mesh partitions in time integration. International Journal for Numerical Methods in Engineering, 1978, 12(10): 1575-1586
    Belytschko T, Yen HJ, Mullen R. Mixed methods for time integration. Computer Methods in Applied Mechanics and Engineering, 1979, 17-18(2): 259-275
    Liu WK, Belytschko T. Mixed-time implicit-explicit finite elements for transient analysis. Computers and Structures, 1982, 15(4): 445-450
    Belytschko T, Liu WK, Smolinski P. Multi-stepping implicit-explicit procedures in transient analysis. In: Proceedings of the International Conference on Innovative Methods for Nonlinear Problems. Swansea, U.K.: Pineridge Press International Ltd. 1984
    Smolinski P. An explicit multi-time step integration method for second order equations. Computer Methods in Applied Mechanics and Engineering, 1992, 94(1): 25-34
    Smolinski P. Subcycling integration with non-integer time steps for structural dynamics problems. Computers & Structures, 1996, 59(2): 273-281
    Daniel WJT. The subcycled Newmark algorithm. Computational Mechanics, 1997, 20(3): 272-281
    Smolinski P, Wu YS. An implicit multi-time step integration method for structural dynamics problems. Computational Mechanics, 1998, 22(4): 337-343
    Wu YS, Smolinski P. A multi-time step integration algorithm for structural dynamics based on the modified trapezoidal rule. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3-4): 641-660
    Daniel WJT. A partial velocity approach to subcycling structural dynamics. Computer Methods in Applied Mechanics and Engineering, 2003, 192(3-4): 375-394
    高晖,李光耀,钟志华等. 汽车碰撞计算机仿真中的子循环法分析. 机械工程学报, 2005, 41(11): 98-101 (Gao Hui, Li Guangyao, Zhong Zhihua, et al. Analysis of subcycling algorithms for computer simulation of crashworthiness. Chinese Journal of Mechanical Engineering, 2005, 41(11): 98-101 (in Chinese))
    缪建成,朱平,陈关龙等. 多柔体系统响应计算的子循环计算方法研究. 力学学报, 2008, 40(4): 511-519(Miao Jiancheng, Zhu Pin, Chen Guanlong, et al. Study on sub-cycling algorithm for flexible multi-body system. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 511-519 (in Chinese))
    Pugal D, Solin P, Kim KJ, et al. Modeling ionic polymer-metal composites with space-time adaptive multimesh hp-FEM. Communications in Computational Physics, 2012, 11: 249-270
    Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Mineola, NY: Dover Publications Inc, 2000
    Remennikov AM. A review of methods for predicting bomb blast effects on buildings. Journal of Battlefield Technology, 2003, 6(3): 5-10
    Ngo T, Mendis P, Gupta A, et al. Blast loading and blast effects on structures-An overview. Electronic Journal of Structural Engineering, 2007, 7(Special Issue: Loading on Structures): 76-91
    Saatcioglu M, Ozbakkaloglu T, Naumoski N, et al. Response of earthquake-resistant reinforced-concrete buildings to blast loading. Canadian Journal of Civil Engineering, 2009, 36(8): 1378-1390
  • Related Articles

    [1]Wang Zaihua, Hu Haiyan. STABILITY OF A FORCE CONTROL SYSTEM WITH SAMPLED-DATA FEEDBACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1372-1381. DOI: 10.6052/0459-1879-16-102
    [2]Geng Yanan, Cai Zongxi. STABILITY OF A PRESSURIZED ELLIPSOIDAL BALLOON[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1343-1352. DOI: 10.6052/0459-1879-16-142
    [3]Feng Meiyan, Huang Shenghong. ENHANCEMENT OF STABILITY OF 3D MOVING PARTICLE SEMI-IMPLICIT METHOD BY ARTIFICIAL VISCOSITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 515-524. DOI: 10.6052/0459-1879-12-247
    [4]Xiuhua Ni, Weishan Chen, Junkao Liu, Shengjun Shi. The effect of spring stiffness on the stability of passive dynamic walking[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 541-547. DOI: 10.6052/0459-1879-2010-3-2009-270
    [5]Xuemin Ye, Chunxi Li, Songlin Wang. Hydrodynamic stability of a liquid wavy film with interfacial shear[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 307-312. DOI: 10.6052/0459-1879-2009-3-2007-594
    [6]Qing Shen, Dehua Zhu. Numerical study of the stability of hypersonic wake[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 1-7. DOI: 10.6052/0459-1879-2009-1-2008-249
    [7]STABILITY OF MULTIPLE EQUILIBRIA IN THERMOHALINE DOUBLE-DIFFUSIVE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(1): 21-28. DOI: 10.6052/0459-1879-1999-1-1995-001
    [8]ON STABILITY OF UPRIGHT STANDING HUMAN BODY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 88-91. DOI: 10.6052/0459-1879-1995-S-1995-507
    [9]ON THE STABILITY OF ISOTHERMAL DISCONTINUITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 742-746. DOI: 10.6052/0459-1879-1992-6-1995-798
    [10]NUMERICAL ANALYSIS OF STABILITY FOR REVOLUTIONARY THIN SHELL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(1): 110-114. DOI: 10.6052/0459-1879-1990-1-1995-920
  • Cited by

    Periodical cited type(8)

    1. 刘浩,谢络,姚博仁,孙孟舸,胡海豹. 高分子-自抛光漆复合涂层减阻特性实验研究. 力学学报. 2023(06): 1228-1235 . 本站查看
    2. 石若冉,张浩,张志,李茂林. 突扩管中高分子聚合物溶液湍流减阻的数值模拟. 山东建筑大学学报. 2023(06): 31-38 .
    3. 陈丽,徐太平,李栓,丁小惠. 清洁减阻驱油压裂液在致密油藏新井压裂上的应用. 精细与专用化学品. 2022(06): 23-27 .
    4. 张志,张浩,石若冉,李茂林. 表面活性剂减阻及传热研究进展. 区域供热. 2022(05): 150-158 .
    5. 杨松默,王刚,曹延林,黄忠意,段慧玲,吕鹏宇. 水下多级微结构液气界面的稳定性和可恢复性研究. 力学学报. 2020(02): 451-461 . 本站查看
    6. 彭绍府,蔡书鹏. 洞塞对表面活性剂减阻管流阻力特性的影响. 湖南工业大学学报. 2020(06): 22-26 .
    7. 王侃宏,张悦,刘欢,乔华. 减阻剂对变截面管流动阻力特性的研究. 煤炭与化工. 2019(02): 121-125+134 .
    8. 魏进家,刘飞,刘冬洁. 减阻用表面活性剂溶液分子动力学模拟研究进展. 力学学报. 2019(04): 971-990 . 本站查看

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1374) PDF downloads (1524) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return