Citation: | Luo Binqiang, Wang Guiji, Tan Fuli, Zhao Jianheng, Sun Chengwei. MEASUREMENT OF DYNAMIC STRENGTH OF LY12 ALUMINUM UNDER MAGNETICALLY DRIVEN QUASI-ISENTROPIC COMPRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 241-247. DOI: 10.6052/0459-1879-13-227 |
Fowles GR, Shock wave compression of hardened and annealed 2024 aluminum. J Appl Phys, 1961, 32(8): 1475-1487
|
Yong C, Dubugnon O. A reflected shear wave technique for determining dynamic rock strength. Int J Rock Mech Min Sci Geomech , 1977, 14(5-6): 247-259
|
Sayed A, Clifton RJ, Herman L. The oblique-plate impact experiemt. Exp Mech , 1976. 16(4): 127-132
|
Johnson JN. Shock propagation produced by planar impact in linearly elastic anisotropic media. J Appl Phys, 1971, 42(13): 5522-5530
|
Chhabildas LC, Swegle JW. Dynamic pressure-shear loading of materials using anisotropic crystals. J Appl Phys, 1980, 51(9): 4799-4807
|
Asay JR, Lipkin J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material. J Appl Phys, 1978, 49(7): 4242-4247
|
Asay JR, Chhabildas LC, Dandekar DP. Shear strength of shock-loaded polycrystalline tungsten. J Appl Phys , 1980, 51(9): 4774-4783
|
Barnes JF, Blewett PJ, McQueen RG, et al. Taylor instability in solids. J Appl Phys, 1974, 45(2): 727-732
|
Park HS, Lorenz KT, Cavallo RM, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate. Physical Review Letters, 2010, 104(13): 135504
|
Alexander CS. Magnetically applied pressure-shear: A new technique for direct strength measurement at high pressure. Sandia National Laboratories: Albuquerque, New Mexico. 2010, 1-79
|
Alexander CS, Asay JR, Haill TA. Magnetically applied pressure-shear: A new method for direct measurement of strength at high pressure. J Appl Phys, 2010, 108(12): 126101
|
Rosenberg Z. Review on lateral stress measurements with piezoresistive Gauges. In: Furnish MD, Ed. Shock Compression of Condensed Matter, 2000, AIP. 1033-7
|
Vogler TJ, Chhabildas LC. Strength behavior of materials at high pressures. International Journal of Impact Engineering, 2006, 33(1): 812-825
|
唐志平. 压剪复合平板冲击加载技术进展及其应用. 力学进展, 2007, 37(3): 398-408 (Tang Zhiping. Progress and application of combined compression and shear wave loading technique. Advances in Mechanics, 2007, 37(3), 398-408 (in Chinese))
|
谭华. 实验冲击波物理导引. 北京: 国防工业出版社, 2007. 171 (Tan Hua, Introduction to Experimental Shock-Wave Physics. Beijing:National Defense Industry Press, 2007. 171 (in Chinese))
|
Furnish MD, Chhabildas LC, Reinhart WD. Time-resolved particle velocity measurements at impact velocity of 10km/s. International Journal of Impact Engineering, 1999, 23(1): 261-270
|
Chhabildas LC, Asay JR. Shear strength of tungsten under shock and quasi-isentropic loading to 250GPa. Report, SAND88-0306, 1988
|
胡建波, 戴诚达, 俞宇颖等. 双屈服面法测量金属材料动高压屈服强度的若干改进. 爆炸与冲击, 2006, 26(6): 516-521 (Hu Jianbo, Dai Chengda, Yu Yuyin, et al. Some improvements of the self-consistent method for measuring the dynamic yield strength of ductile metals. Explosion and Shock Waves, 2006, 26(6): 516-521 (in Chinese))
|
张江跃, 谭华, 虞吉林. 双屈服法测定93W合金的屈服强度. 高压物理学报, 1997. 11(4): 254-259 (Zhang Jianyue, Tan Hua, Yu Jili. Determination of the yield strength of 93W alloys by using AC techniques. Chinese Journal of High Pressure Physics, 1997, 11(4): 254-259 (in Chinese))
|
Asay JR, Ao T, Davis JP, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression. J Appl Phys, 2008, 103(8): 083514
|
Ao T, Knudson MD, Asay JR, et al. Strength of lithium fluoride under shockless compression to 114GPa. J Appl Phys, 2009, 106(10): 103507
|
Vogler TJ, Ao T, Asay JR. High-pressure strength of aluminum under quasi-isentropic loading. International Journal of Plasticity, 2009, 25(4): 679-694
|
Wang GJ, Luo BQ, Zhang XP, et al. A4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading. Rev Sci Instrum, 2013, 84(1): 015117
|
Ao T, Asay JR, Chantrenne S, et al. A compact strip-line pulsed power generator for isentropic compression experiments. Rev Sci Instrum, 2008, 79(1): 013903
|
Weng JD, Tan H, Wang X. Optical-fiber interferometer for velocity measurements with picosecond resolution. Appl Phys Lett, 2006, 89(11): 111101
|
罗斌强, 谭福利, 赵剑衡. 磁驱动准等熵加载实验中加载压力均匀性分析. 见: 第九届全国爆炸力学学术会议文集. 青海 西宁, 2012 (Luo Binqiang, Tan Fuli, Zhao Jianheng. Analysis of loading pressure uniformity during magnetically driven quasi-isentropic compression. In: Proceedings of the Ninth National Conference on Explosive Mechanics, Qinhai, Xinin, 2012 (in Chinese))
|
王礼立 编著. 朱兆祥 审校. 应力波基础. 第二版. 北京: 国防工业出版社, 2005. 100 (Wang Lili, Zhu Zhaoxiang. Foundation of stress waves. 2nd edn. Beijing:National Defense Industry Press, 2005. 100 (in Chinese))
|
Vogler TJ. On measuring the strength of metals at ultrahigh strain rates. J Appl Phys, 2009, 106(5): 053530
|
[1] | Chen Xiaodong, Yu Shuang, Wang Yanwu, Lin Long, Qu Meng, Ji Shunying. EXPERIMENTAL STUDY ON COMPRESSIVE STRENGTH OF SEA ICE IN THE NORTH POLE AND HIGH ARCTIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-11. DOI: 10.6052/0459-1879-24-570 |
[2] | Zhang Xu, Qin Cong, Qu Tengfei, Ma Jing. RESEARCH ON THE YIELD MODEL FOR METAL MICROBEAMS CONSIDERING THE STRESS GRADIENT EFFECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1025-1036. DOI: 10.6052/0459-1879-23-516 |
[3] | Du Xin, Yuan Fuping, Xiong Qilin, Zhang Bo, Kan Qianhua, Zhang Xu. SHOCK WAVE RESPONSE AND SPALL STRENGTH IN CoCrFeMnNi HIGH-ENTROPY ALLOY: A MOLECULAR DYNAMICS STUDY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2152-2160. DOI: 10.6052/0459-1879-22-239 |
[4] | Wu Zhihui, Niu Gongjie, Hao Yufeng, Qian Jianping, Liu Rongzhong. RESEARCH ON MODELING OF COMPRESSIVE YIELD BEHAVIOR FOR HTPB COMPOSITE BASE BLEED GRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1810-1819. DOI: 10.6052/0459-1879-19-200 |
[5] | Wan Zheng, Meng Da, Song Chenchen. AN EXTENDED STRENGTH AND YIELD CRITERION FOR GEOMATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1545-1556. DOI: 10.6052/0459-1879-19-074 |
[6] | Zhang Keshi, Huang Shihong, Liu Guilong, Lu Damin. MEASURING SUBSEQUENT YIELD SURFACE OF PURE COPPER BY CRYSTAL PLASTICITY SIMULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 870-879. DOI: 10.6052/0459-1879-17-074 |
[7] | Wan Zheng, Qiu Rendong, Guo Jinxue. A KIND OF STRENGTH AND YIELD CRITERION FOR GEOMATERIALS AND ITS TRANSFORMATION STRESS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 726-740. DOI: 10.6052/0459-1879-16-297 |
[8] | Du Xiuli, Ma Chao, Lu Dechun. NONLINEAR UNIFIED STRENGTH MODEL OF GEOMATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 389-397. DOI: 10.6052/0459-1879-13-312 |
[9] | STUDY ON THE RELIABILITY OF RESIDUAL STRENGTH IN FATIGUE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(2): 220-228. DOI: 10.6052/0459-1879-1998-2-1995-119 |
[10] | THE MAXIMUM PACKING FRACTION AND YIELD STRESS OF CONCENTRATED SUSPENSIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(4): 400-405. DOI: 10.6052/0459-1879-1996-4-1995-348 |