Citation: | Wang Anping. SPECIAL HYBRID STRESS SOLID ELEMENT WITH DRILLING DEGREES OF FREEDOM AND A TRACTION-FREE CIRCULAR BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 105-113. DOI: 10.6052/0459-1879-13-104 |
Robinson J. Four-node quadrilateral stress membrane element with rotational stiffness. Int J Meth Engng, 1980, 16: 1567-1569
|
Mohr GA. Finite element formulation by nested interpolations: Application to drilling freedom problem. Comput & Struct, 1982, 15: 185-190
|
Allman DJ. A compatible triangular element including vertex rotations for plane elasticity analysis. Comput & Struct, 1984, 19: 1-8
|
Bergan PG, Felippa CA. A triangle membrane eleemnt with rotational degrees of freedom. Comp Meth Appl Mech Engng, 1985, 50: 25-69
|
Cook RD. On the Allman triangular and a related quadrilateral element. Comput & Struct, 1986, 22: 1065-1067
|
MacNeal RH, Harder RL. A proposed standard set of problems to test finite element accuracy. Finite Element in Analysis and Design, 1985, 1: 3-20
|
Yunus SM, Pawlak TP, Cook RD. Solid elements with rotational degrees of freedom: Part Ⅰ:hexahedron elements. Int J Num Meth Engng, 1991, 31: 573-592
|
Pawlak TP, Yunus SM, Cook RD. Solid elements with rotational degrees of freedom: Part Ⅱ:tetrahedron elements. Int J Num Meth Engng, 1991, 31: 593-610
|
Sekiguchi M, Kikuchi N. Re-examination of membrane element with drilling freedom. In: CD-ROM 5th World Congress on Comput Mech (WCCMV), Vienna, 2002
|
刘红, 唐立民. 带旋转自由度的拟协调平面元. 计算结构力学及其应用, 1990, 7(4): 23-31 (Liu Hong, Tang Limin. The quasi-confirming plane elements with rotational degree of freedom. Computational Structural Mechanics and Applications, 1990, 7(4): 23-31 (in Chinese))
|
文学章, 龙驭球, 何放龙. 带旋转自由度的广义协调三角形膜元. 工程力学, 2002, 19(6): 11-15 (The generalized confirming triangular membrane elements with rotational degree of freedom. Engineering Mechanics, 2002, 19(6): 11-15 (in Chinese))
|
须寅, 龙驭球. 应用广义协调条件构造具有旋转自由度的三角形膜元. 工程力学, 1993, 10(2): 31-39 (Xu Yin, Long Yuqiu. Triangular membrane elements with rotational degree of freedom by using the generalized confirming condition. Engineering Mechanics, 1993, 10(2): 31-39 (in Chinese))
|
Cook RD. A plane hybrid element with rotational D.O.F and adjustable stiffness. Int J Num Meth Engng, 1987, 24: 1499-1508
|
Yunus SM, Saigal S, Cook RD. On improved hybrid finite elements with rotational degrees of freedom. Int J Num Meth Engng, 1989, 28: 785-800
|
Groenwold AA, Xiao QZ, Theron NJ. Accurate solution of traction free boundaries using hybrid stress membrane elements with drillings degrees of freedom. Computers & Structures, 2004, 82: 2071-2081
|
Pan YS, Chen DP. A 4-node membrane element with rotational degree of freedom based on hybrid stress model. In: Proc of EPMESC'IV, 1992, II: 700-706
|
Sze KY, Ghali A. A hybrid brick element with rotational degrees of freedom. Computational Mechanics, 1993, 12: 147-163
|
Sze KY, Chen WJ, Cheung YK. An efficient quadrilateral plane element with drilling degree of freedom using orthogonal stress modes. Comput & Struct, 1992, 42(5): 695-705
|
Sze KY, Sim YS, Soh Ak. A hybrid stress quadrilateral shell element with full rotational DOFs. Int J Num Meth Engng, 1997, 40: 1785-1800 3.0.CO;2-H">
|
王安平, 田宗漱. 具有一个无外力圆弧边含转动自由度的杂交应力元. 中国科学院研究生院学报, 2007, 24(1): 25-33 (Wang Anping, Tian Zongshu. Special hybrid stress membrane element with drilling degrees of freedom and a traction-free circular boundary. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24(1): 25-33 (in Chinese))
|
Wang AP. A quadrilateral membrane hybrid stress element with drilling degrees of freedom. Acta Mechanica Sinica, 2012, 28(5): 1367-1373
|
Tong P, Pian THH. A variational principle and the Convergence of a finite element method based on assumed stress distribution. Int J Solids Struct, 1969, 5: 436-472
|
Tian ZS. New hybrid solid element with traction-free cylindrical surface. Acta Mechanical Sinica. 1989, 21: 373-378
|
铁摩辛柯, 古地尔. 弹性理论. 徐芝纶译. 北京: 高等教育出版社, 1990 (Timoshenko SP, Goodier JN. Theory of Elasticity. Xu Zhilun transl. Beijing: Higher Education Press, 1990 (in Chinese))
|
Pian THH, Tong P. Relations between incompatible displacement model and hybrid stress model. Int J Num Mech Engng, 1986, 22: 173-181
|
Hengst H. Beitrag zue beurteilung des spannungszustandes einer qeluchten schreibe, Z. angew. Math Mech, 1938, 18: 44-48 (in German)
|
Pian THH, Tian ZS. Hybrid solid element with a traction-free cylindrical surface. In: Proc. of ASME Symposium on Hybrid and Mixed Finite Element Models, 1986. 89-95
|
[1] | Lu Chuanhao, Zhou Yuqi, Cao Yong, Li Jie, Liu Zhifang, Chen Long. RESEARCH AND OPTIMIZATION OF IMPACT RESISTANCE OF NOVEL GRADIENT CONTINUOUS CONTROLLABLE SANDWICH PANELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1713-1726. DOI: 10.6052/0459-1879-23-569 |
[2] | Zhang Tianhui, Liu Zhifang, Lei Jianyin, Wang Zhihua, Li Shiqiang. PLASTIC DYNAMIC RESPONSE AND ENERGY DISSIPATION MECHANISM OF ALUMINUM FOAM SANDWICH CIRCULAR TUBE UNDER INTERNAL BLAST LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2344-2353. DOI: 10.6052/0459-1879-23-165 |
[3] | Chen Yao, Ye Wangjie, Shi Jiayao, Feng Jian. DIGITAL DESIGN AND MODEL VERIFICATION OF MIURA ORIGAMI METAMATERIAL STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2019-2029. DOI: 10.6052/0459-1879-22-080 |
[4] | Fan Dongyu, Su Binhao, Peng Hui, Pei Xiaoyang, Zheng Zhijun, Zhang Jianxun, Qin Qinghua. RESEARCH ON DYNAMIC CRUSHING AND MECHANISM OF MITIGATION AND ENERGY ABSORPTION OF CELLULAR SACRIFICIAL LAYERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630-1640. DOI: 10.6052/0459-1879-22-047 |
[5] | Jia Ran, Zhao Guiping. POISSON’S RATIO AND TRIAXIAL COMPRESSION DEFORMATION PATTERN OF CLOSED-CELL ALUMINUM FOAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2289-2297. DOI: 10.6052/0459-1879-21-173 |
[6] | Wu Wenwang, Xiao Dengbao, Meng Jiaxu, Liu Kai, Niu Yinghao, Xue Rui, Zhang Peng, Ding Wenjie, Ye Xuan, Ling Xue, Bi Ying, Xia Yong. MECHANICAL DESIGN, IMPACT ENERGY ABSORPTION AND APPLICATIONS OF AUXETIC STRUCTURES IN AUTOMOBILE LIGHTWEIGHT ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638. DOI: 10.6052/0459-1879-20-333 |
[7] | Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. DOI: 10.6052/0459-1879-18-323 |
[8] | Wang Pengfei, Xu Songlin, Zheng Hang, Hu Shisheng. INFLUENCE OF DEFORMATION MODES ON SHPB EXPERIMENTAL RESULTS OF CELLULAR METAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928-932. DOI: 10.6052/0459-1879-11-354 |
[9] | Bo Wang, Xiong Zhang, Shengli Xu. Mechanical behavior of 2d periodic honeycombs under in-plane uniaxial compression[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 274-281. DOI: 10.6052/0459-1879-2009-2-2007-400 |
[10] | Interaction effect in energy absorption of porous material filled thin-walled structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 697-703. DOI: 10.6052/0459-1879-2005-6-2004-255 |
1. |
于江飞,连城阅,汤涛,唐卓,汪洪波,孙明波. 基于深度学习建表的宽域发动机火焰面燃烧模型构建与验证. 力学学报. 2024(03): 723-739 .
![]() | |
2. |
李嘉航,石保禄,赵马杰,王宁飞. 高马赫数飞行条件下超燃冲压发动机燃烧组织方案数值模拟. 火箭推进. 2023(05): 1-12 .
![]() |