EI、Scopus 收录
中文核心期刊
Zheng Yuxuan, Chen Lei, Hu Shisheng, Zhou Fenghua. CHARACTERISTICS OF FRAGMENT SIZE DISTRIBUTION OF DUCTILE MATERIALS FRAGMENTIZED UNDER HIGH STRAINRATE TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580-587. DOI: 10.6052/0459-1879-12-338
Citation: Zheng Yuxuan, Chen Lei, Hu Shisheng, Zhou Fenghua. CHARACTERISTICS OF FRAGMENT SIZE DISTRIBUTION OF DUCTILE MATERIALS FRAGMENTIZED UNDER HIGH STRAINRATE TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580-587. DOI: 10.6052/0459-1879-12-338

CHARACTERISTICS OF FRAGMENT SIZE DISTRIBUTION OF DUCTILE MATERIALS FRAGMENTIZED UNDER HIGH STRAINRATE TENSION

Funds: The project was supported by the National Natural Science Foundation of China (10972108, 11272163), a grant from the Impact and Safety of Coastal Engineering Initiative, a COE Program of Zhejiang Provincial Government at Ningbo University (zj1118) and the K. C. Wong Magna Fund of Ningbo University.
  • Received Date: November 28, 2012
  • Revised Date: January 11, 2013
  • Finite Element Method has been used to simulate the fracture and fragmentations of ductile metallic rings undergoing high rate expansions. In this paper, the numerical fragments obtained from the FEM simulations were collected for statistical analysis. It is found that: (1) The cumulative distributions of the normalized fragment sizes at different initial expansion velocities are similar, and collectively the fragment size distributions are modeled as a Weibull distribution with an initial threshold. Approximately, this distribution can be further simplified as a Rayleigh distribution, which is the special case with the Weibull parameter to be 2; (2) The cumulative distribution of the fragment sizes exhibits a step-like nature, which means that the fragment sizes may be "quantized". A Monte-Carlo model is established to describe the origination of such quantization. In the model, the fractures occur at the sites where the tensioned material necks. The spacing of the necking sites follows a narrow Weibull distribution. As the fragment size is the sum of several (a random integer) necking spacing, the distributions of the fragment sizes automatically inherit the quantum properties of the random integers as long as the spacing distributions are not so wide. The experimental results conducted on Al L04 and on OFHC agree with the analysis.
  • Mott NF. A theory of the fragmentation of shells and bombs. Ministry of Supply, AC4035, 1943
    Grady DE. Local inertial effects in dynamic fragmentation. Journal Applied Physics, 1982, 53: 322-325
    Grady DE, Benson DA. Fragmentation of metal rings by electromagnetic loading. Experimental Mechanics, 1983, 23(4): 393-400
    Grady DE, Kipp ME. Geometric statistics and dynamic fragmentation. Journal Applied Physics, 1985, 58(3): 1210-1222
    Grady DE, Olsen ML. A statistics and energy based theory of dynamic fragmentation. International Journal of Impact Engineering, 2003, 29(1-10): 293-306
    Zhang H, Ravi-Chandar K. On the dynamics of necking and fragmentation——I. Real-time and post-mortem observations in Al 6061-O. International Journal of Fracture, 2006, 142(3-4): 183-217
    Miller O, Freund LB, Needleman A. Modeling and simulation of dynamic fragmentation in brittle materials. International Journal of Fracture, 1999, 96: 101-125
    Zhou F, Molinari JF, Ramesh KT. A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution. International Journal of Solids and Structures, 2005, 42(18-19): 5181-5207
    Kipp ME, Grady DE. Dynamic fracture growth and interaction in one dimension. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399-415
    Mott NF. Fragmentation of shell cases. Proc R Soc London, Ser A, 1947, 189(1018): 300-308
    陈磊, 周风华, 汤铁钢. 韧性金属圆环高速膨胀碎裂过程的有限元模拟. 力学学报, 2011, 43(5): 861-870 (Chen Lei, Zhou Fenghua, Tang Tiegang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861-870 (in Chinese))
    郑宇轩, 胡时胜, 周风华. 韧性材料高应变率拉伸碎裂过程及材料参数影响. 固体力学学报, 2012, 33(4): 358-369 (Zheng Yuxuan, Hu Shisheng, Zhou Fenghua. High strainrate tensile fragmentation process of ductile materials and the effects of material parameters. Acta Mechanica Solida Sinica, 2012, 33(4): 358-369 (in Chinese))
    Ishii T, Matsushita M. Fragmentation of long thin glass rods. Journal of the Physical Society of Japan, 1992, 61(10): 3474-3477
    Oddershede L, Dimon P, Bohr J. Self-organized criticality in fragmenting. Physical Review Letters, 1993, 71(19): 3107-3110
    Marsili M, Zhang YC. Probabilistic fragmentation and effective power law. Physical Review Letters, 1996, 77(17): 3577-3580
    Meibom A, Balslev I. Composite power laws in shock fragmentation. Physical Review Letters, 1996, 76(14): 2492-2494
    Kadono T. Fragment mass distribution of platelike objects. Physical Review Letters, 1997, 78(8): 1444-1447
    Inaoka H, Toyosawa E, Takayasu H. Aspect ratio dependence of impact fragmentation. Physical Review Letters, 1997, 78(18): 3455-3458
    Brown WK, Wohletz KH. Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions. Journal of Applied Physics, 1995, 78(4): 2758-2763
    Grady DE. Fragmentation of Rings and Shells: The Legacy of N.F. Mott. Spring. 2006
    Grady DE. Application of survival statitics to the Impulsive fragmentation of ductile rings. In: Meyers MA, Murr LE, eds. Shock Waves and High-Strain-Rate Phenomena in Metals. New York and London: Plenum, 1981. 181-192
    Zhou F, Molinari JF, Ramesh KT. Characteristic fragment size distributions in dynamic fragmentation. Applied Physics Letters, 2006, 88(26): 261918
    Walsh JM. Plastic instability and particulation in stretching metal jets. Journal Applied Physics, 1984, 56(7): 1997-2006
    Chou PC, Carleone J. The stability of shaped-charge jets. Journal Applied Physics, 1977, 48(10): 4187-4195
    Zhou F, Molinari JF, Ramesh KT. An elastic-visco-plastic analysis of ductile expanding ring. International Journal of Impact Engineering, 2006, 33(1-12): 880-891
  • Cited by

    Periodical cited type(10)

    1. 徐仕侃,王晖,孙雪航,丁溢群,俞翠雯,陈一夫,张松松,陈霞波. 基于中医整体观探析糖尿病肾病Ⅲ、Ⅳ期患者脉搏波特征. 新中医. 2024(09): 82-87 .
    2. 李本森,卢意成,龚文波,缪馥星. 糖尿病患者“寸、关、尺”脉搏压力波形的频谱分析. 北京生物医学工程. 2023(02): 117-123+151 .
    3. 丁溢群,龚文波,范佳莹. 基于中医整体观的脉搏波理论探析阴虚型糖尿病患者脉搏波参数特征分析. 浙江中西医结合杂志. 2023(12): 1108-1110 .
    4. 陈靓,王建康,陈霞波,周开,龚文波,唐可伟,张业,顾颖杰,苏文涛,王晖,王礼立. 从点、线、面、维、元、圆的气化交动谈中医象思维. 中华中医药杂志. 2022(07): 4152-4155 .
    5. 王礼立,王晖,丁圆圆,陈霞波,杨黎明,龚文波,浣石,缪馥星. 脉搏波本构关系实验研究的探索. 爆炸与冲击. 2022(12): 3-12 .
    6. 缪馥星,王晖,王礼立,何文明,陈霞波,龚文波,丁圆圆,浣石,徐冲,谢燕青,卢意成,沈利君. 血液-血管耦合特性与脉搏波传播特性的关系. 爆炸与冲击. 2020(04): 4-13 .
    7. 王晖,王礼立,缪馥星,龚文波,浣石,徐冲. 论心脏功能的“泵说”与“波说”. 爆炸与冲击. 2020(11): 4-13 .
    8. 王礼立,王晖,杨黎明,陈霞波,姜锡权,龚文波,浣石,张业. 论脉搏波客观化和定量化研究的症结所在. 中华中医药杂志. 2017(11): 4855-4863 .
    9. 王礼立,胡时胜,杨黎明,董新龙,王晖. 聊聊动态强度和损伤演化. 爆炸与冲击. 2017(02): 169-179 .
    10. 姜韵慧,唐健,施文娟,王晓亮,高君益. 基于云端的口袋式人体脉搏诊断仪. 电子测量技术. 2017(07): 188-193 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (1365) PDF downloads (1122) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return