EI、Scopus 收录
中文核心期刊
Zhao Zhen, Liu Caishany, Chen Bin. THEORETICAL ANALYSIS AND EXPERIMETNAL VERIFICATION FOR PAINLEV碋 PARADOX[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 37-44. DOI: 10.6052/0459-1879-12-316
Citation: Zhao Zhen, Liu Caishany, Chen Bin. THEORETICAL ANALYSIS AND EXPERIMETNAL VERIFICATION FOR PAINLEV碋 PARADOX[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 37-44. DOI: 10.6052/0459-1879-12-316

THEORETICAL ANALYSIS AND EXPERIMETNAL VERIFICATION FOR PAINLEV碋 PARADOX

Funds: The project was supported by the National Natural Science Foundation of China (11172019, 11132001) and Fanzhou Youth Research Foundation (20110501).
  • Received Date: November 08, 2012
  • Revised Date: November 20, 2012
  • Painlevé paradox may appear in multi-rigid-body systems subjected to Coulomb’ friction. No solution or multiple solutions make the systems inconsistent or indeterminate. It is worth investigating how the subsequent motions of the systems in inconsistent states evolve since the actual systems will always move on. The theoretical analysis and the experimental verification are carried out to confirm the tangential impact in the inconsistent case of the systems. The characteristic of the stick motions are confirmed during tangential impact.
  • 1 Painlevé P. Sur les Lois du Ffrottement de Glissement. C R Hebd Seances Acad Sci, 1895, 121: 112-115 (in French)
    2 Brogliato B. Nonsmooth Mechanics, Models, Dynamics and Control. London: Springer-Verlag London Limited, 1999
    3 姚文丽, 徐鉴. 考虑奇异性的平面多刚体系统冲击问题理论解. 振 动工程学报, 2009, 22(1): 65-69 (Yao Wenli, Xu Jian. Theoretical dynamical impact solution on planar multi-rigid-body systems considering singularity. Journal of Vibration Engineering, 2009, 22(1):65-69 (in Chinese))
    4 Song P, Kraus P, Kumar V, et al. Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. Journal of Applied Mechanics, 2001, 68: 118-128
    5 Shivaswamy S. Modeling contact forces and energy dissipation during impact in mechanical systems. [PhD Thesis]. Ann Arbor MI: UMI, 2002
    6 Zhao Z, Chen B, Liu CS. Impact model resolution on Painlevé paradox. Acta Mechanica Sinica, 2004, 20(6): 659-660
    7 Zhao Z, Liu CS, Chen B. The Painlevé paradox studied at a 3D slender rod. Multibody Syst Dyn, 2008, 19: 323-343
    8 Genot F, Brogliato B. New results on Painlevé paradoxes. Eur J Mech A/Solids, 1999, 18: 653-677
    9 Liu CS, Zhen Z, Chen B. The bouncing motion appearing in a robotic system with unilateral constraint. Nonlinear Dynamics,2007, 49 (1-2): 217-232
    10 Zhao Z, Liu CS, Ma W, et al. Experimental investigation of the Painlevé paradox in a robotic System. J Appl Mech, 2008, 75(4):041006
  • Related Articles

    [1]Zhou Yongfeng, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION WITH MULTIDIMENSIONAL RANDOM VARIABLES: THE CASE OF EULER-BERNOULLI BEAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2659-2668. DOI: 10.6052/0459-1879-24-001
    [2]He Chao, Jia Yuanping, Zhou Shunhua. THREE-DIMENSIONAL ANALYTICAL METHOD FOR CALCULATING VIBRATIONS OF A COUPLED TUNNEL-SOIL-FLUID SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1329-1341. DOI: 10.6052/0459-1879-22-543
    [3]Wang Zhechao, Jia Wenjie, Feng Xiating, Wang Jingkui. ANALYTICAL SOLUTION OF LIMIT STORAGE PRESSURES FOR TUNNEL TYPE LINED GAS STORAGE CAVERNS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 710-718. DOI: 10.6052/0459-1879-22-474
    [4]Shi Hemu, Zeng Xiaohui, Wu Han. ANALYTICAL SOLUTION OF THE HUNTING MOTION OF A WHEELSET NONLINEAR DYNAMICAL SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1807-1819. DOI: 10.6052/0459-1879-22-003
    [5]Xu Sihui, Wang Binglong, Zhou Shunhua, Yang Xinwen, Li Yaochen. APPROXIMATE THEORY AND ANALYTICAL SOLUTION FOR DYNAMIC CALCULATION OF VISCOELASTIC LAYERED PERIODIC PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1348-1359. DOI: 10.6052/0459-1879-17-248
    [6]Jiang Zhongming, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION OF THREE CLASSES STOCHASTIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 413-421. DOI: 10.6052/0459-1879-15-221
    [7]Wang Yingze, Wang Qian, Liu Dong, Song Xinnan. ASYMPTOTIC ANALYSIS OF SOLID SPHERE SUBJECTED TO THERMAL SHOCK UNDER FRACTIONAL ORDER GENERALIZED THERMOELASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 248-254. DOI: 10.6052/0459-1879-13-287
    [8]Li Yaochen, Nie Guojun, Yang Changjin. APPROXIMATE THEORY AND ANALYTICAL SOLUTION FOR RECTANGULAR PLATES WITH IN-PLANE STIFFNESS GRADIENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 560-567. DOI: 10.6052/0459-1879-12-318
    [9]Yaochen Li, Feng Qi, Zheng Zhong. Simplified theory and analytical solutions for functionally graded piezoelectric circular plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 636-645. DOI: 10.6052/0459-1879-2008-5-2007-145
    [10]THE ANALYTICAL SOLUTION OF DIFFERENTIAL EQUATION OF ELASTIC CURVED SURFACE OF STEPPED THIN RECTANGULAR PLATE ON WINKLER'S FOUNDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 754-762. DOI: 10.6052/0459-1879-1992-6-1995-800

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return