Citation: | Zhao Zhen, Liu Caishany, Chen Bin. THEORETICAL ANALYSIS AND EXPERIMETNAL VERIFICATION FOR PAINLEV碋 PARADOX[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 37-44. DOI: 10.6052/0459-1879-12-316 |
1 Painlevé P. Sur les Lois du Ffrottement de Glissement. C R Hebd Seances Acad Sci, 1895, 121: 112-115 (in French)
|
2 Brogliato B. Nonsmooth Mechanics, Models, Dynamics and Control. London: Springer-Verlag London Limited, 1999
|
3 姚文丽, 徐鉴. 考虑奇异性的平面多刚体系统冲击问题理论解. 振 动工程学报, 2009, 22(1): 65-69 (Yao Wenli, Xu Jian. Theoretical dynamical impact solution on planar multi-rigid-body systems considering singularity. Journal of Vibration Engineering, 2009, 22(1):65-69 (in Chinese))
|
4 Song P, Kraus P, Kumar V, et al. Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. Journal of Applied Mechanics, 2001, 68: 118-128
|
5 Shivaswamy S. Modeling contact forces and energy dissipation during impact in mechanical systems. [PhD Thesis]. Ann Arbor MI: UMI, 2002
|
6 Zhao Z, Chen B, Liu CS. Impact model resolution on Painlevé paradox. Acta Mechanica Sinica, 2004, 20(6): 659-660
|
7 Zhao Z, Liu CS, Chen B. The Painlevé paradox studied at a 3D slender rod. Multibody Syst Dyn, 2008, 19: 323-343
|
8 Genot F, Brogliato B. New results on Painlevé paradoxes. Eur J Mech A/Solids, 1999, 18: 653-677
|
9 Liu CS, Zhen Z, Chen B. The bouncing motion appearing in a robotic system with unilateral constraint. Nonlinear Dynamics,2007, 49 (1-2): 217-232
|
10 Zhao Z, Liu CS, Ma W, et al. Experimental investigation of the Painlevé paradox in a robotic System. J Appl Mech, 2008, 75(4):041006
|