EI、Scopus 收录
中文核心期刊
Zhang Hongsheng, Gu Junbo, Jia Haiqing, Gu Biao. A NUMERICAL MODEL FOR INTERNAL WAVE PROPAGATION IN CONTINUOUSLY STRATIFIED OCEAN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 896-903. DOI: 10.6052/0459-1879-12-195
Citation: Zhang Hongsheng, Gu Junbo, Jia Haiqing, Gu Biao. A NUMERICAL MODEL FOR INTERNAL WAVE PROPAGATION IN CONTINUOUSLY STRATIFIED OCEAN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 896-903. DOI: 10.6052/0459-1879-12-195

A NUMERICAL MODEL FOR INTERNAL WAVE PROPAGATION IN CONTINUOUSLY STRATIFIED OCEAN

Funds: The project was supported by the National Natural Science Foundation of China(51079082),the LRET Through the Joint centre Involving University College London,Shanghai Jiaotong University and Harbin Engineering University,State Laboratory of\linebreak Ocean Engineering,Shanghai Jiaotong University (GP010818),and the Aeronautical Science Foundation of China (08A05002).
  • Received Date: March 15, 2012
  • Revised Date: June 19, 2012
  • Based on the Euler equations,the finite volume method is employed to develop a numerical model for the internal wave propagation in continuously stratified ocean with variable water depth.The convection terms are discretized with the total variation diminishing (TVD) scheme to make the numerical scheme accurate up to second order,and the SIMPLE algorithm is used in the present numerical scheme.In order to simplify the calculation process and easily adapt to different TVD schemes,the adopted semi-implicit method for pressure linked equations (SIMPLE) algorithm is modified.The predicted velocity fields are calculated with the explicit scheme,instead of the implicit scheme,which is traditionally adopted in the SIMPLE algorithm.Also,the varieties of the hydrostatic pressure due to the density disturbances are not involved in the original SIMPLE algorithm,but they are involved and resolved in this paper.Thus,the SIMPLE algorithm is further developed.The open boundary at the far end is dealt with a sponge layer combined with the Sommerfield's radiation condition.The numerical results with constant depth are compared to the analytical solutions and good agreements are found,and the calculated spatial distributions of the density fields with a submerged dike at different moments are analyzed in details.It is shown that the present numerical model can effectively simulate the propagation of internal wave.
  • 方欣华,王景明.海洋内波研究现状简介.力学进展,1986,16(3):319-330 (Fang Xinhua,Wang Jingming.A review on oceanic internal waves.Advances in Mechanics,1986,16(3):319-330 (in Chinese))
    刘成鑫,纪友亮,胡喜锋.内潮汐和内波沉积研究现状与展望.海洋地质动态,2005,21(3):6-11 (Liu Chengxin,Ji Youliang,Hu Xifeng.Research status and perspectective of internal tide and internal wave deposits.Marine Geology Letters,2005,21(3):6-11 (in Chinese))
    蔡树群,甘子钧,龙小敏.南海北部孤立子内波的一些特征和演变.科学通报,2001,46(15):1245-1250 (Cai Shuqun,Gan Zijun,Long Xiaomin.Some characteristics and evolution of internal solitions in the northern South China Sea. Chinese Science Bulletin,2001,46(15):1245-1250 (in Chinese))
    姜加虎,杨锡臣,汪宪栕.抚仙湖内波数值模拟.水科学进展,1994,5(1):31-39 (Jiang Jiahu,Yang Xichen,Wang Xianchen.Numerical simulation of internal waves in Lake Fuxian.Advances in Water Science,1994,5(1):31-39 (in Chinese))
    方国洪,李鸿雁,杜涛.内潮的一种分层三维数值模式.海洋科学集刊,1997,38(1):1-15 (Fang Guohong,Li Hongyan,Du Tao.A layered 3-D numerical ocean model for simulation of internal tides.Studia Marina Sinica,1997,38(1):1-15 (in Chinese))
    Fringer OB,Street RL.The dynamics of breaking progressive interfacial waves.Journal of Fluid Mechanics,2003,494:319-353
    李德筠,王日新,沈国光等.连续分层重力内波的数学模型及其传播模式.天津大学学报,1996,29(6):865-873 (Li Dejun,Wang Rixin,Shen Guoguang,et al.Numerical method and propagation model on internal wave with contiuous stratification.Journal of Tianjin Uinversity,1996,29(6):865-873 (in Chinese))
    刘国涛,尚晓东,陈桂英等.连续层化流体中内波破碎的动力学机制的数值研究.热带海洋学报,2009,28(1):1-8 (Liu Guotao,Shang Xiaodong,Chen Guiying,et al.A numerical study of dynamical mechanism of induced internal waves breaking in continual stratfied fluids.Journal of Tropical Oceanogarphy,2009,28(1):1-8 (in Chinese))
    Aigner A,Grimshaw R.Numerical simulations of the flow of a continuously stratified fluid,incorporating inertial effects.Fluid Dynamics Research,2001,28(5):323-347
    Lamb KG.Numerical simulations of stratified inviscid flow over a smooth obstacle.Journal of Fluid Mechanics,1994,260:1-22
    Bell JB,Marcus DL.A second order projection method for variable-density flow.Journal of Computational Physics,1992,101(2):334-348
    Bell JB,Colella P,Glaz HM.A second order projection method for the incompressible Navier Stokes equations.Journal of Computational Physics,1989,85(2):257-283
    Patankar SV,Spalding DB.A calculation procedure for heat,mass and momentum transfer in three-dimensional parabolic flows.International Journal of Heat and Mass Transfer,1972,15(10):1787-1806
    张学学,张超,刘静.微重力条件下管肋式空间辐射器的传热分析.清华大学学报(自然科学版).1997,37(2):55-58 (Zhang Xuexue,Zhang Chao,Liu Jing.Investigations on heat transfer in a fin-tube radiator under micro-gravity.Journal of Tsinghua University (Sci & Tech),1997,37(2):55-58 (in Chinese))
    赵国智,孔凡让,占惊春等.基于SIMPLE算法的湍流场数值模拟.水电能源科学.2007,25(3):100-102 (Zhao Guozhi,Kong Fanrang,Zhan Jingchun,et al.Numerical simulation of turbulent flow field based on SIMPLE algorithm.Water Resources and Power,2007,25(3):100-102 (in Chinese))
    柏威,鄂学全.用非结构网格研究旋转振荡圆柱绕流.力学学报,2004,36(4):466-471 (Bai Wei,E Xuequan.Flow past a rotating circular cylinder by FVM based on unstructured meshes.Acta Mechanica Sinica,2004,36(4):466-471 (in Chinese))
    林伟波.密度分层流中的浮射流模拟.华东师范大学学报(自然科学版),2009,41(3):56-62 (Lin Weibo.Simulation of buoyant flow in density-stratified flow.Journal of East China Normal University (Natural Science),2009,41(3):56-62 (in Chinese))
    Paisley MF.Multigrid computation of stratified flow over two-dimensional obstacles.Journal of Computational Physics,1997,136(2):411-424
    K&228;mpf J.Advanced Ocean Modeling Using Open-source Software.Berlin Heidelberg:Springer-Verlag,2010
    Fringer OB,Armfield SW,Street RL.Reducing numerical diffusion in interfacial gravity wave simulations.International Journal for Numerical Methods in Fluids,2005,49(3):301-329
    韩朋,任冰,李雪临等.基于VOF方法的不规则波数值波浪水槽的阻尼消波研究.水道港口,2009,30(1):9-13 (Han Peng,Ren Bing,Li Xuelin,et al.Study on damping absorber for the irregular waves based on VOF method.Journal of Waterway and Harbor,2009,30(1):9-13 (in Chinese))
    叶安乐,李凤岐.物理海洋学.青岛:青岛海洋大学出版社,1992 (Ye Anle,Li Fengqi.Physical Oceanography.Qingdao:Qingdao Ocean University Press,1992 (in Chinese))
    李家春.水面下的波浪——海洋内波.力学与实践,2005,27(2):1-6 (Li Jiachun.Billow under the sea surface—internal waves in the ocean.Mechanics in Engineering,2005,27(2):1-6 (in Chinese))
  • Cited by

    Periodical cited type(15)

    1. 孙思远,盛亚鹏,段玥晨,齐佳旗. 拓扑优化体心立方结构平压性能研究. 复合材料科学与工程. 2025(03): 7-14 .
    2. 冯易鑫 ,彭辉 ,罗威 . 聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究. 力学学报. 2024(11): 3333-3350 . 本站查看
    3. 刘安宇,刘斌,雷加静,秦恺,吴卫国. 面向一体化设计的船用碳玻混杂复合材料帽型加筋板结构多尺度分析. 中国舰船研究. 2024(06): 257-267 .
    4. 刘乐,时建纬,杨晶晶,李成. 碳纤维平纹与斜纹编织复合材料低速冲击多尺度分析与对比. 复合材料科学与工程. 2023(01): 16-25+106 .
    5. 冯雨春,张盛,高希光. 考虑分层损伤的平纹编织SiC/SiC弯曲失效模拟. 推进技术. 2023(04): 246-254 .
    6. 程振锋,贾康康,李成. 碳纤维平纹机织复合材料低速冲击损伤的非线性超声检测研究. 复合材料科学与工程. 2023(05): 94-101 .
    7. 徐姚兴,韦尧兵,刘俭辉. GFRP层合板近缘和边缘低速冲击损伤数值模拟研究. 兰州理工大学学报. 2022(01): 30-38 .
    8. 盛亚鹏,段玥晨,谢鑫. 多孔格栅均匀化模型平压仿真分析. 计算力学学报. 2022(01): 92-98 .
    9. 曹勇,张超. 薄层复合材料冲击损伤行为研究进展. 航空学报. 2022(06): 154-170 .
    10. 金其多,任毅如,胡绚,蒋宏勇. 含黏弹性夹芯FG-GRC后屈曲梁的低速冲击响应. 力学学报. 2021(01): 194-204 . 本站查看
    11. 张晨曦,娄源峰,铁瑛,丛世凡,李要磊. 基于渐进均匀化多尺度方法的CFR平纹机织材料冲击后压缩损伤研究. 复合材料科学与工程. 2021(10): 5-12 .
    12. 王帅,徐绯,代震,刘小川,李肖成,杨磊峰,惠旭龙. 结构冲击畸变问题的直接相似方法研究. 力学学报. 2020(03): 774-786 . 本站查看
    13. 赵丰,郭巍,罗统波,黄浩. CFRP汽车储气罐低速冲击损伤特性分析. 塑料. 2020(04): 58-64 .
    14. 李正,杨庆生,尚军军,刘夏. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能. 力学学报. 2020(06): 1700-1708 . 本站查看
    15. 李则霖,李晖,王东升,任朝晖,祖旭东,周晋,官忠伟,王相平. 低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型. 力学学报. 2020(06): 1690-1699 . 本站查看

    Other cited types(23)

Catalog

    Article Metrics

    Article views (2061) PDF downloads (1131) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return