Citation: | Wei Chang, Fan Yuchen, Zhou Yongqing, Zhang Chaoqun, Liu Xin, Wang Heyang. Self-regressive physics-informed neural network based on Runge-Kutta method for solving partial differential equations. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2482-2493. DOI: 10.6052/0459-1879-24-106 |
[1] |
Yurtsever E, Lambert J, Carballo A, et al. A survey of autonomous driving: Common practices and emerging technologies. IEEE Access, 2020, 8: 58443-58469 doi: 10.1109/ACCESS.2020.2983149
|
[2] |
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916 doi: 10.1109/TPAMI.2015.2389824
|
[3] |
Afkanpour A, Adeel S, Bassani H, et al. BERT for long documents: A case study of automated ICD coding. arXiv Preprint, arXiv: 2022, 221102519
|
[4] |
Baker N, Alexander F, Bremer T, et al. Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence. USDOE Office of Science (SC), Washington DC, United States, 2019
|
[5] |
Karniadakis GE, Kevrekidis IG, Lu L, et al. Physics-informed machine learning. Nature Reviews Physics, 2021, 3(6): 422-440 doi: 10.1038/s42254-021-00314-5
|
[6] |
Brunton SL, Noack BR, Koumoutsakos P. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 2020, 52(1): 477-508 doi: 10.1146/annurev-fluid-010719-060214
|
[7] |
Lu L, Jin P, Pang G, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 2021, 3(3): 218-229 doi: 10.1038/s42256-021-00302-5
|
[8] |
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Networks, 1989, 2(5): 359-366 doi: 10.1016/0893-6080(89)90020-8
|
[9] |
Lu L, Meng X, Mao Z, et al. DeepXDE: A deep learning library for solving differential equations. SIAM Review, 2021, 63(1): 208-228 doi: 10.1137/19M1274067
|
[10] |
Margossian CC. A review of automatic differentiation and its efficient implementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9(4): e1305 doi: 10.1002/widm.1305
|
[11] |
Baydin AG, Pearlmutter BA, Radul AA, et al. Automatic differentiation in machine learning: A survey. Journal of Marchine Learning Research, 2018, 18: 1-43
|
[12] |
Rasmussen CE, Williams CK. Gaussian Processes for Machine Learning. MIT Press Cambridge MA, 2006
|
[13] |
Raissi M, Perdikaris P, Karniadakis GE. Machine learning of linear differential equations using Gaussian processes. Journal of Computational Physics, 2017, 348: 683-693 doi: 10.1016/j.jcp.2017.07.050
|
[14] |
Raissi M, Perdikaris P, Karniadakis GE. Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM Journal on Scientific Computing, 2018, 40(1): A98-A172 doi: 10.1137/17M1120762
|
[15] |
Khoo Y, Lu J, Ying L. Solving parametric PDE problems with artificial neural networks. European Journal of Applied Mathematics, 2021, 32(3): 421-435 doi: 10.1017/S0956792520000182
|
[16] |
Zhu Y, Zabaras N, Koutsourelakis PS, et al. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. Journal of Computational Physics, 2019, 394: 56-81 doi: 10.1016/j.jcp.2019.05.024
|
[17] |
Dissanayake M, Phan-Thien N. Neural-network-based approximations for solving partial differential equations. Communications in Numerical Methods in Engineering, 1994, 10(3): 195-201 doi: 10.1002/cnm.1640100303
|
[18] |
Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019, 378: 686-707 doi: 10.1016/j.jcp.2018.10.045
|
[19] |
宋家豪, 曹文博, 张伟伟. FD-PINN: 频域物理信息神经网络. 力学学报, 2023, 55(5): 1195-1205 (Song Jiahao, Cao Wenbo, Zhang Weiwei. FD-PINN: Frequency domain physics-informed neural network. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1195-1205 (in Chinese) doi: 10.6052/0459-1879-23-169
Song Jiahao, Cao Wenbo, Zhang Weiwei. FD-PINN: Frequency domain physics-informed neural network. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1195-1205 (in Chinese) doi: 10.6052/0459-1879-23-169
|
[20] |
Jagtap AD, Kawaguchi K, Karniadakis GE. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. Journal of Computational Physics, 2020, 404: 109136 doi: 10.1016/j.jcp.2019.109136
|
[21] |
Jin X, Cai S, Li H, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations. Journal of Computational Physics, 2021, 426: 109951 doi: 10.1016/j.jcp.2020.109951
|
[22] |
查文舒, 李道伦, 沈路航等. 基于神经网络的偏微分方程求解方法研究综述. 力学学报, 2022, 54(3): 543-556 (Zha Wenshu, Li Daolun, Shen Luhang, et al. Review of neural network-based methods for solving partial differential equations. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 543-556 (in Chinese) doi: 10.6052/0459-1879-21-617
Zha Wenshu, Li Daolun, Shen Luhang, et al. Review of neural network-based methods for solving partial differential equations. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 543-556 (in Chinese) doi: 10.6052/0459-1879-21-617
|
[23] |
Raissi M, Karniadakis GE. Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics, 2018, 357: 125-141 doi: 10.1016/j.jcp.2017.11.039
|
[24] |
蒋子超, 江俊扬, 姚清河等. 基于神经网络的差分方程快速求解方法. 力学学报, 2021, 53(7): 1912-1921 (Jiang Zichao, Jiang Junyang, Yao Qinghe, et al. A fast solver based on deep neural network for difference equation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1912-1921 (in Chinese) doi: 10.6052/0459-1879-21-040
Jiang Zichao, Jiang Junyang, Yao Qinghe, et al. A fast solver based on deep neural network for difference equation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1912-1921 (in Chinese) doi: 10.6052/0459-1879-21-040
|
[25] |
Yuan L, Ni YQ, Deng XY, et al. A-PINN: Auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations. Journal of Computational Physics, 2022, 462: 111260 doi: 10.1016/j.jcp.2022.111260
|
[26] |
Iserles A. A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, 2009
|
[27] |
Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv Preprint, arXiv, 2014, 14126980
|
[28] |
Byrd RH, Lu P, Nocedal J, et al. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208 doi: 10.1137/0916069
|
[29] |
Hussain S, Shah A, Ayub S, et al. An approximate analytical solution of the Allen-Cahn equation using homotopy perturbation method and homotopy analysis method. Heliyon, 2019, 5(12): e03060 doi: 10.1016/j.heliyon.2019.e03060
|
[30] |
Agarap AF. Deep learning using rectified linear units (relu). arXiv Preprint, arXiv, 2018, 180308375
|
[31] |
Fan E. Extended tanh-function method and its applications to nonlinear equations. Physics Letters A, 2000, 277(4-5): 212-218 doi: 10.1016/S0375-9601(00)00725-8
|
[32] |
Yin X, Goudriaan J, Lantinga EA, et al. A flexible sigmoid function of determinate growth. Annals of Botany, 2003, 91(3): 361-371 doi: 10.1093/aob/mcg029
|
[33] |
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010
|
[34] |
Bakodah H, Al-zaid N, Mirzazadeh M, et al. Decomposition method for solving Burgers’ equation with Dirichlet and Neumann boundary conditions. Optik, 2017, 130: 1339-1346 doi: 10.1016/j.ijleo.2016.11.140
|
[35] |
Torrey L, Shavlik J. Transfer learning//Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. IGI Global, 2010: 242-264
|
1. |
陈豪龙,唐欣越,王润华,周焕林,柳占立. 基于物理信息神经网络的多介质非线性瞬态热传导问题研究. 力学学报. 2025(01): 89-102 .
![]() | |
2. |
韦昌,樊昱晨,周永清,刘欣,李驰,王赫阳. 基于时间权重的物理信息神经网络求解非稳态偏微分方程. 力学学报. 2025(03): 755-766 .
![]() |