Citation: | Ren Feng, Du Junmin, Li Guanghua. Intelligent self-adaptive control for mitigating lift fluctuations of a circular cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 972-979. DOI: 10.6052/0459-1879-23-449 |
[1] |
Choi H, Jeon WP, Kim J. Control of flow over a bluff body. Annu. Rev. Fluid Mech, 2008, 40: 113-139
|
[2] |
Williamson CHK, Govardhan R. Vortex-induced vibrations. Annu Rev Fluid Mech, 2004, 36: 413-455 doi: 10.1146/annurev.fluid.36.050802.122128
|
[3] |
Wang M, Freund JB, Lele SK. Computational prediction of flow-generated sound. Annu Rev Fluid Mech, 2006, 38: 483-512 doi: 10.1146/annurev.fluid.38.050304.092036
|
[4] |
Ren F, Wang CL, Tang H. Active control of vortex-induced vibration of a circular cylinder using machine learning. Phys Fluids, 2019, 31(9): 093601 doi: 10.1063/1.5115258
|
[5] |
Wu J, Qiu Y, Shu C, et al. Flow control of acircular cylinder by using an attached flexible filament. Phys Fluids, 2014, 26(10): 103601 doi: 10.1063/1.4896942
|
[6] |
Cattafesta LN, Sheplak M. Actuators for active flow control. Annual Review of Fluid Mechanics, 2011, 43: 247-272
|
[7] |
Wang CL, Tang H, Duan F, et al. Control of wakes and vortex-induced vibrations of a single circular cylinder using synthetic jets. Journal of Fluids and Structures, 2016, 60: 160-179 doi: 10.1016/j.jfluidstructs.2015.11.003
|
[8] |
Brunton SL, Noack BR. Closed-loop turbulence control: Progress and challenges. Applied Mechanics Reviews, 2015, 67(5): 050801 doi: 10.1115/1.4031175
|
[9] |
Lu L, Qin JM, Teng B, et al. Numerical investigations of lift suppression by feedback rotary oscillation of circular cylinder at low Reynolds number. Phys Fluids, 2011, 23(3): 033601 doi: 10.1063/1.3560379
|
[10] |
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529-533 doi: 10.1038/nature14236
|
[11] |
张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望. 航空学报, 2021, 42(4): 524689 (Zhang Weiwei, Kou Jiaqing, Liu Yilang. Prospect of artificial intelligence empowered fluid mechanics. Acta Aeronautica ar Astronautica Sinica, 2021, 42(4): 524689 (in Chinese)
|
[12] |
Rabault J, Ren F, Zhang W, et al. Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization. Journal of Hydrodynamics, 2020, 32(2): 234-246 doi: 10.1007/s42241-020-0028-y
|
[13] |
Ren F, Hu HB, Tang H. Active flow control using machine learning: A brief review. Journal of Hydrodynamics, 2020, 32(2): 247-253 doi: 10.1007/s42241-020-0026-0
|
[14] |
Brunton SL, Noack BR, Koumoutsakos P. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 2020, 52: 477-508 doi: 10.1146/annurev-fluid-010719-060214
|
[15] |
任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势. 航空学报, 2021, 42(4): 524686 (Ren Feng, Gao Chuanqiang, Tanghui. Machine learning for flow control: Application and development trends. Acta Aeronautica ar Astronautica Sinica, 2021, 42(4): 524686 (in Chinese)
|
[16] |
Rabault J, Kuchta M, Jensen A, et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. J Fluid Mech, 2019, 865: 281-302 doi: 10.1017/jfm.2019.62
|
[17] |
Rabault J, Kuhnle A. Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach. Phys Fluids, 2019, 31(9): 094105 doi: 10.1063/1.5116415
|
[18] |
Ren F, Rabault J, Tang H. Applying deep reinforcement learning to active flow control in weakly turbulent conditions. Phys Fluids, 2021, 33(3): 037121 doi: 10.1063/5.0037371
|
[19] |
Fan D, Yang L, Wang Z, et al. Reinforcement learning for bluff body active flow control in experiments and simulations. Proceedings of the National Academy of Sciences, 2020, 117(42): 26091-26098 doi: 10.1073/pnas.2004939117
|
[20] |
Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms. arXiv, 2017: 170706347
|
[21] |
Ren F, Wang C, Tang H. Bluff body uses deep-reinforcement-learning trained active flow control to achieve hydrodynamic stealth. Phys Fluids, 2021, 33(9): 093602 doi: 10.1063/5.0060690
|
[22] |
任峰. 针对圆柱涡激振动问题的智能流动控制. 水动力研究与进展, 2022, 37: 757-762 (Ren Feng. Intelligent flow control for vortex-induced vibration of cylinder. Chinese Journal of Hydrodynamics, 2022, 37: 757-762 (in Chinese)
|
[23] |
He XY, Luo LS. Lattice Boltzmann model for the incompressible Navier-Stokes equation. J Stat Phys, 1997, 88(3-4): 927-944
|
[24] |
刘天羽, 胡海豹, 宋健等. 均匀旋转对圆柱水动力及流动结构的影响. 力学学报, 2024, 56(1): 1-14 (Liu Tianyu, Hu Haibao, Song Feng, et al. Hydrodynamics and flow structures of a uniformoly rotating circular cylindar. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 1-14 (in Chinese)
|
[25] |
Ren F, Song BW, Zhang Y, et al. A GPU-accelerated solver for turbulent flow and scalar transport based on the lattice Boltzmann method. Computers & Fluids, 2018, 173: 29-36
|
[26] |
Jiang H, Cheng L. Large-eddy simulation of flow past a circular cylinder for Reynolds numbers 400 to 3900. Phys Fluids, 2021, 33(3): 034119 doi: 10.1063/5.0041168
|
[27] |
Bai H, Alam MM. Dependence of square cylinder wake on Reynolds number. Phys Fluids, 2018, 30: 015102 doi: 10.1063/1.4996945
|
[28] |
Thiria B, Wesfreid J. Stability properties of forced wakes. J Fluid Mech, 2007, 579: 137-161 doi: 10.1017/S0022112007004818
|
[29] |
Xie Z, Hu H, Song J, et al. Applying reinforcement learning to mitigate wake-induced lift fluctuation of a wall-confined circular cylinder in tandem configuration. Phys Fluids, 2023, 35: 053617
|
[30] |
Assi G, Bearman P, Meneghini JR. On the wake-induced vibration of tandem circular cylinders: The vortex interaction excitation mechanism. J Fluid Mech, 2010, 661: 365-401
|
[1] | Zhao Yong, Ge Yixuan, Chen Xinmeng, Chen Zhenyu, Wang Lei. MULTI-DISTRIBUTION REGULARIZED LATTICE BOLTZMANN METHOD FOR CONVECTION-DIFFUSION-SYSTEM-BASED INCOMPRESSIBLE NAVIER-STOKES EQUATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(7): 1-14. DOI: 10.6052/0459-1879-25-096 |
[2] | Luo Renyu, Li Qizhi, Zu Gongbo, Huang Yunjin, Yang Gengchao, Yao Qinghe. A SUPER-RESOLUTION LATTICE BOLTZMANN METHOD BASED ON CONVOLUTIONAL NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3612-3624. DOI: 10.6052/0459-1879-24-248 |
[3] | Liu Tianyu, Hu Haibao, Song Jian, Ren Feng. HYDRODYNAMICS AND FLOW STRUCTURES OF A UNIFORMLY ROTATING CIRCULAR CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 928-942. DOI: 10.6052/0459-1879-23-441 |
[4] | Yang Xuguang, Wang Lei. REGULARIZED LATTICE BOLTZMANN METHOD FOR MULTI-COMPONENT AND MULTI-PHASE PENG-ROBINSON FLUIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1649-1661. DOI: 10.6052/0459-1879-23-096 |
[5] | Cheng Zhilin, Ning Zhengfu, Zeng Yan, Wang Qing, Sui Weibo, Zhang Wentong, Ye Hongtao, Chen Zhili. A LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN POROUS MEDIA USING A MODIFIED BOUNDARY CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 124-134. DOI: 10.6052/0459-1879-18-179 |
[6] | Dong Bo, Li Weizhong, Feng Yujing, Sun Tao. LATTICE BOLTZMANN SIMULATION OF A POWER-LAW FLUID PAST A CIRCULAR CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 44-53. DOI: 10.6052/0459-1879-13-299 |
[7] | Shuai Gong Zhaoli Guo. Lattice boltzmann simulation of flow over a transversely oscillating circular cylinder[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 809-818. DOI: 10.6052/0459-1879-2011-5-lxxb2010-608 |
[8] | Gong Shuai Zhaoli Guo. Lattice boltzmann simulation of the flow around a circular cylinder oscillating streamwisely[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 11-17. DOI: 10.6052/0459-1879-2011-1-lxxb2009-702 |
[9] | Zhiwei Tian, Chuguang Zheng, Xiaoming Wang. Lattice boltzmann simulation of gas micro-flows in transitional regime[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 828-834. DOI: 10.6052/0459-1879-2009-6-2008-472 |
[10] | DIES OF BURGERS EQUATION USING A LATTICE BOLTZMANN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(2). DOI: 10.6052/0459-1879-1999-2-1995-016 |
1. |
田文龙,齐乐华,晁许江. 基于有限元压缩方法的复合材料RVE创建. 力学学报. 2023(07): 1537-1547 .
![]() | |
2. |
刘聪超,徐新虎,李淳孝,祝志远. 基于ABAQUS对EPDM/PP TPV界面屈服强度的预测. 农业装备与车辆工程. 2023(09): 121-124 .
![]() | |
3. |
朱秀芳,卢国兴,马书香,周宏元,张宏. CNT对树脂基和金属基材料的力学增强性能对比. 北京理工大学学报. 2023(11): 1187-1196 .
![]() |