Citation: | Guo Yuan, Fu Zhuojia, Min Jian, Liu Xiaoting, Zhao Haitao. Curriculum-transfer-learning based physics-informed neural networks for long-time simulation of nonlinear wave propagation. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 763-773. DOI: 10.6052/0459-1879-23-457 |
[1] |
Constantin A. Nonlinear water waves: introduction and overview. Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, 2018, 376(2111): 20170310
|
[2] |
张洪生, 王亚玲. 非均匀水流中非线性波传播的数值模拟. 力学学报, 2007, 23(6): 732-740 (Zhang Hongsheng, Wang Yaling. Numerical simulation of nonlinear wave propagation on non-uniform current. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 732-740 (in Chinese)
|
[3] |
Roy A, Nehra R, Langrock C, et al. Non-equilibrium spectral phase transitions in coupled nonlinear optical resonators. Nature Physics, 2023, 19(3): 427-434 doi: 10.1038/s41567-022-01874-8
|
[4] |
Quan L, Qian F, Liu X, et al. A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave. The Journal of the Acoustical Society of America, 2016, 139(6): 3373-3385 doi: 10.1121/1.4949542
|
[5] |
Tasaketh I, Cen W, Liu B, et al. Nonlinear seismic response of SV wave incident angle and direction to concrete gravity dam. International Journal of Civil Engineering, 2022, 20(12): 1479-1494 doi: 10.1007/s40999-022-00756-7
|
[6] |
Zheng PB, Zhang ZH, Zhang HS, et al. Numerical simulation of nonlinear wave propagation from deep to shallow water. Journal of Marine Science and Engineering, 2023, 11(5): 1003 doi: 10.3390/jmse11051003
|
[7] |
Wang S, Ge Y. Efficient sixth-order finite difference method for the two-dimensional nonlinear wave equation with variable coefficient. Mathematical Sciences, 2022, https://doi.org/10.1007/s40096-022-00498-6
|
[8] |
Li K, Tan Z. A two-grid fully discrete Galerkin finite element approximation for fully nonlinear time-fractional wave equations. Nonlinear Dynamics, 2023, 111(9): 8497-8521 doi: 10.1007/s11071-023-08265-5
|
[9] |
Qianshun C, Shengchang W. Spectral method for solving nonlinear wave equations. Acta Mathematicae Applicatae Sinica, 1984, 1(2): 99-107 doi: 10.1007/BF01669671
|
[10] |
Khurshudyan AZH. Nonlinear Green’s functions for wave equation with quadratic and hyperbolic potentials. Advances in Mathematical Physics, 2018, 2018: 1-9
|
[11] |
Fronk MD, Fang L, Packo P, et al. Elastic wave propagation in weakly nonlinear media and metamaterials: a review of recent developments. Nonlinear Dynamics, 2023, 111(12): 10709-10741 doi: 10.1007/s11071-023-08399-6
|
[12] |
查文舒, 李道伦, 沈路航等. 基于神经网络的偏微分方程求解方法研究综述. 力学学报, 2022, 54(3): 543-556 (Zha Wenshu, Li Daolun, Shen Luhang, et al. Review of neural network-based methods for solving partial differential equations. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 543-556 (in Chinese)
|
[13] |
Sarker IH. Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science, 2021, 2(6): 420 doi: 10.1007/s42979-021-00815-1
|
[14] |
Sarker IH. Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2021, 2(3): 160 doi: 10.1007/s42979-021-00592-x
|
[15] |
蒋子超, 江俊扬, 姚清河等. 基于神经网络的差分方程快速求解方法. 力学学报, 2021, 53(7): 1912-1921 (Jiang Zichao, Jiang Junyang, Yao Qinghe, et. al. A fast solver based on deep neural network for difference. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1912-1921 (in Chinese)
Jiang Zichao, Jiang Junyang, Yao Qinghe, et. al. A fast solver based on deep neural network for difference. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1912-1921 (in Chinese)
|
[16] |
曹蕾蕾, 朱旺, 武建华等. 基于人工神经网络的声子晶体逆向设计. 力学学报, 2021, 53(7): 1992-1998 (Cao Leilei, Zhu Wang, Wu Jianhua et. al,. Inverse design of phononic crystals by artificial neural networks. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1992-1998 (in Chinese) doi: 10.6052/0459-1879-21-142
|
[17] |
胡震宇, 王子路, 陈坚强等. 基于深度神经网络的横流转捩预测. 力学学报, 2023, 55(1): 38-51 (Hu Zhenyu, Wang Zilu, Chen Jianqiang, et al. Prediction of crossflow transition based on deep neural networks. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 38-51 (in Chinese) doi: 10.6052/0459-1879-22-448
|
[18] |
黄钟民, 谢臻, 张易申等. 面内变刚度薄板弯曲问题的挠度−弯矩耦合神经网络方法. 力学学报, 2021, 53(9): 2541-2553 (Huang Zhongmin, Xie Zhen, Zhang Yishen, et al. Deflection-bending moment coupling neural network method for the bending problem of thin plates with in-plane stiffness gradient. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2541-2553 (in Chinese)
|
[19] |
Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 2019, 378: 686-707 doi: 10.1016/j.jcp.2018.10.045
|
[20] |
Jiang X, Wang D, Chen X, et al. Physics-informed neural network for optical fiber parameter estimation from the nonlinear schrödinger equation. Journal of Lightwave Technology, 2022, 40(21): 7095-7105 doi: 10.1109/JLT.2022.3199782
|
[21] |
Li J, Li B. Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation. Chaos, Solitons & Fractals, 2022, 164: 112712
|
[22] |
Jagtap AD, Kawaguchi K, Karniadakis GE. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. Journal of Computational Physics, 2020, 404: 109136 doi: 10.1016/j.jcp.2019.109136
|
[23] |
宋家豪, 曹文博, 张伟伟. FD-PINN: 频域物理信息神经网络. 力学学报, 2023, 55(5): 1195-1205 (Song Jiahao, Cao Wenbo, Zhang Weiwei. FD-PINN: frequency domain physics-informed neural network. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1195-1205 (in Chinese)
|
[24] |
Tang Z, Fu Z, Reutskiy S. An extrinsic approach based on physics-informed neural networks for PDEs on surfaces. Mathematics, 2022, 10(16): 2861 doi: 10.3390/math10162861
|
[25] |
汤卓超, 傅卓佳. 基于物理信息的神经网络求解曲面上对流扩散方程. 计算力学学报, 2023, 40(2): 216-222 (Tang Zhuochao, Fu Zhuojia. Physics-informed neural networks for solving convection-diffusion equations on surfaces. Chinese Journal of Computational Mechanics, 2023, 40(2): 216-222 (in Chinese) doi: 10.7511/jslx20211021002
|
[26] |
Xu W, Lu Y, Wang L. Transfer learning enhanced deepONet for long-time prediction of evolution equations. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(9): 10629-10636 doi: 10.1609/aaai.v37i9.26262
|
[27] |
Meng X, Li Z, Zhang D, et al. PPINN: Parareal physics-informed neural network for time-dependent PDEs. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113250 doi: 10.1016/j.cma.2020.113250
|
[28] |
Guo J, Yao Y, Wang H, et al. Pre-training strategy for solving evolution equations based on physics-informed neural networks. Journal of Computational Physics, 2023, 489: 112258 doi: 10.1016/j.jcp.2023.112258
|
[29] |
Penwarden M, Jagtap AD, Zhe S, et al. A unified scalable framework for causal sweeping strategies for physics-informed neural networks (PINNs) and their temporal decompositions. Journal of Computational Physics, 2023, 493: 112464
|
[30] |
Bengio Y, Louradour J, Collobert R, et al. Curriculum learning//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal Quebec Canada: ACM, 2009: 41-48
|
[31] |
Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. Journal of Big Data, 2016, 3(1): 9 doi: 10.1186/s40537-016-0043-6
|
1. |
陈豪龙,唐欣越,王润华,周焕林,柳占立. 基于物理信息神经网络的多介质非线性瞬态热传导问题研究. 力学学报. 2025(01): 89-102 .
![]() | |
2. |
苑光耀,王俊淞,赵玄烈,耿敬. 基于PINN的二维剪切流圆柱绕流场重构. 力学学报. 2025(02): 436-452 .
![]() | |
3. |
韦昌,樊昱晨,周永清,刘欣,李驰,王赫阳. 基于时间权重的物理信息神经网络求解非稳态偏微分方程. 力学学报. 2025(03): 755-766 .
![]() | |
4. |
王飞龙,胡挺,肖扬帆. 基于物理信息神经网络的水库调度研究. 水电能源科学. 2025(04): 213-216 .
![]() | |
5. |
张凌海,周彬,罗毅,冯俊. 物理信息神经网络的一种自适应配置点算法. 力学学报. 2024(10): 3069-3083 .
![]() |