Citation: | Hou Songyang, Wang Dongdong, Wu Zhenyu, Lin Zhiwei. Precise mid-node lumped mass matrices for 3D 20-node hexahedral and 10-node tetrahedral finite elements. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 2043-2055. DOI: 10.6052/0459-1879-23-241 |
[1] |
Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, 2000
|
[2] |
谢臻, 黄钟民, 陈思亚等. 基于无网格法的Timoshenko曲梁动力分析. 固体力学学报, 2022, 43(5): 603-613 (Xie Zhen, Huang Zhongmin, Chen Siya, et al. Dynamic analysis of Timoshenko curved beams based on meshless method. Chinese Journal of Solid Mechanics, 2022, 43(5): 603-613 (in Chinese) doi: 10.19636/j.cnki.cjsm42-1250/o3.2022.016
Xie Z, Huang Z, Chen S, Peng L. Dynamic analysis of Timoshenko curved beams based on meshless method. Chinese Journal of Solid Mechanics, 2022, 43(5): 603-613. (in Chinese)). doi: 10.19636/j.cnki.cjsm42-1250/o3.2022.016
|
[3] |
陈健, 王东东, 刘宇翔等. 无网格动力分析的循环卷积神经网络代理模型. 力学学报, 2022, 54(3): 732-745 (Chen Jian, Wang Dongdong, Liu Yuxiang, et al. A recurrent convolutional neural network surrogate model for dynamic meshfree analysis. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 732-745 (in Chinese) doi: 10.6052/0459-1879-21-565
Chen J, Wang D, Liu Y, Chen J. A recurrent convolutional neural network surrogate model for dynamic meshfree analysis. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 732-745. (in Chinese)). doi: 10.6052/0459-1879-21-565
|
[4] |
Stoter S, Nguyen TH, Hiemstra RR, et al. Variationally consistent mass scaling for explicit time-integration schemes of lower- and higher-order finite element methods. Computer Methods in Applied Mechanics and Engineering, 2022, 399: 115310 doi: 10.1016/j.cma.2022.115310
|
[5] |
Lan M, Yang W, Liang X, et al. Vibration modes of flexoelectric circular plate. Acta Mechanica Sinica, 2022, 38(12): 422063 doi: 10.1007/s10409-022-22063-x
|
[6] |
黄可, 张家应, 王青云. 基于非均匀梁模型的二维柔性机翼固有振动分析. 力学学报, 2023, 55(2): 784-496 (Huang Ke, Zhang Jiaying, Wang Qingyun. Natural vibration analysis of two-dimensional flexible wing based on non-uniform beam model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 784-496 (in Chinese) doi: 10.6052/0459-1879-22-551
Huang K, Zhang J, Wang Q. Natural vibration analysis of two-dimensional flexible wing based on non-uniform beam model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 784-496. (in Chinese)). doi: 10.6052/0459-1879-22-551
|
[7] |
Zienkiewicz OC, Taylor RL. The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann, 2013
|
[8] |
Felippa CA, Onate E. Accurate Timoshenko beam elements for linear elastostatics and LPB stability. Archives of Computational Methods in Engineering, 2021, 28: 2021-2080 doi: 10.1007/s11831-020-09515-0
|
[9] |
Wang D, Liu W, Zhang H. Novel higher order mass matrices for isogeometric structural vibration analysis. Computer Methods in Applied Mechanics and Engineering, 2013, 260: 92-108 doi: 10.1016/j.cma.2013.03.011
|
[10] |
Wang D, Liang Q, Wu J. A quadrature-based superconvergent isogeometric frequency analysis with macro-integration cells and quadratic splines. Computer Methods in Applied Mechanics and Engineering, 2017, 320: 712-744 doi: 10.1016/j.cma.2017.03.041
|
[11] |
Wang D, Pan F, Xu X, et al. Superconvergent isogeometric analysis of natural frequencies for elastic continua with quadratic splines. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 874-905 doi: 10.1016/j.cma.2019.01.010
|
[12] |
Fried I, Malkus DS. Finite element mass lumping by numerical integration with no convergence rate loss. International Journal of Solids and Structures, 1975, 11(4): 461-466 doi: 10.1016/0020-7683(75)90081-5
|
[13] |
Li X, Wang D. On the significance of basis interpolation for accurate lumped mass isogeometric formulation. Computer Methods in Applied Mechanics and Engineering, 2022, 400: 115533 doi: 10.1016/j.cma.2022.115533
|
[14] |
Li X, Zhang H, Wang D. A lumped mass finite element formulation with consistent nodal quadrature for improved frequency analysis of wave equations. Acta Mechanica Sinica, 2022, 38(5): 521388 doi: 10.1007/s10409-021-09022-x
|
[15] |
Li Y, Liang R, Wang D. On convergence rate of finite element eigenvalue analysis with mass lumping by nodal quadrature. Computational Mechanics, 1991, 8(4): 249-256 doi: 10.1007/BF00577378
|
[16] |
Ainsworth M, Wajid HA. Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration. SIAM Journal on Numerical Analysis, 2010, 48(1): 346-371 doi: 10.1137/090754017
|
[17] |
Hinton E, Rock T, Zienkiewicz OC. A note on mass lumping and related processes in the finite element method. Earthquake Engineering and Structural Dynamics, 1976, 4(3): 245-249 doi: 10.1002/eqe.4290040305
|
[18] |
Yang Y, Zheng H, Sivaselvan MV. A rigorous and unified mass lumping scheme for higher-order elements. Computer Methods in Applied Mechanics and Engineering, 2017, 319: 491-514 doi: 10.1016/j.cma.2017.03.011
|
[19] |
Duczek S, Gravenkamp H. Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods. Computer Methods in Applied Mechanics and Engineering, 2019, 353: 516-569 doi: 10.1016/j.cma.2019.05.016
|
[20] |
Li X, Wang D, Xu X, et al. A nodal spacing study on the frequency convergence characteristics of structural free vibration analysis by lumped mass Lagrangian finite elements. Engineering with Computers, 2022, 38: 5519-5540 doi: 10.1007/s00366-022-01668-9
|
[21] |
Ozakca M, Hinton E, Rao NVR. Comparison of three-dimensional solid elements in the analysis of plates. Computers & Structures, 1992, 42(6): 953-968
|
[22] |
Wu HP, Shang Y, Cen S, et al. Penalty C0 8-node quadrilateral and 20-node hexahedral elements for consistent couple stress elasticity based on the unsymmetric finite element method. Engineering Analysis with Boundary Elements, 2023, 147: 302-319 doi: 10.1016/j.enganabound.2022.12.008
|
[23] |
Choi JH, Lee BC, Sim GD. A 10-node tetrahedral element with condensed Lagrange multipliers for the modified couple stress theory. Computers & Structures, 2021, 246: 106476
|
[24] |
Hanukah E, Givli S. A new approach to reduce the number of integration points in mass-matrix computations. Finite Elements in Analysis and Design, 2016, 116: 21-31 doi: 10.1016/j.finel.2016.03.004
|
[25] |
Lo SH, Ling C. Improvement on the 10-node tetrahedral element for three-dimensional problems. Computer Methods in Applied Mechanics and Engineering, 2000, 189(3): 961-974 doi: 10.1016/S0045-7825(99)00410-7
|
[26] |
Hou S, Li X, Wang D, et al. A mid-node mass lumping scheme for accurate structural vibration analysis with serendipity finite elements. International Journal of Applied Mechanics, 2021, 13(1): 2150013 doi: 10.1142/S1758825121500137
|
[27] |
Bathe KJ. Finite Element Procedures. Prentice Hall, 1996
|
[28] |
Rao SS. Vibration of Continuous Systems. John Wiley & Sons, 2007
|
[29] |
Day DM, Romero L. An analytically solvable eigenvalue problem for the linear elasticity equations. UNT Libraries Government Documents Department, 2004
|
[30] |
吴俊超, 吴新瑜, 赵珧冰等. 基于赫林格-赖斯纳变分原理的一致高效无网格本质边界条件施加方法. 力学学报, 2022, 54(12): 3283-3296 (Wu Junchao, Wu Xinyu, Zhao Yaobing, et al. A consistent and efficient method for imposing meshfree essential boundary conditions via Hellinger-Reissner variational principle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3283-3296 (in Chinese) doi: 10.6052/0459-1879-22-151
Wu J, Wu X, Zhao Y, Wang D. A consistent and efficient method for imposing meshfree essential boundary conditions via Hellinger-Reissner variational principle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3283-3296. (in Chinese)). doi: 10.6052/0459-1879-22-151
|
[1] | Qian Zhihao, Ding Chensen, Xu Lingchen, Guo Chaoyang, Yu Yue, Luo Cijin, Liu Moubin. A HIGHLY EFFICIENT AND ACCURATE SURROGATE MODEL FOR FLUID-STRUCTURE INTERACTION WITH LIMITED DATA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 803-815. DOI: 10.6052/0459-1879-25-059 |
[2] | Li Kai, Yang Jingyuan, Gao Chuanqiang, Ye Kun, Zhang Weiwei. STATIC AEROELASTIC ANALYSIS BASED ON PROPER ORTHOGONAL DECOMPOSITION AND SURROGATE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 299-308. DOI: 10.6052/0459-1879-22-523 |
[3] | Zhang Jiaming, Yang Zhijun, Huang Rui. REDUCED-ORDER MODELING FOR AEROELASTIC SYSTEMS VIA NONLINEAR STATE-SPACE IDENTIFICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 150-161. DOI: 10.6052/0459-1879-19-287 |
[4] | Zhu Qianghua, Yang Kai, Liang Yu, Gao Xiaowei. A NOVEL FAST ALGORITHM BASED ON MODEL ORDER REDUCTION FOR ONE CLASS OF TRANSIENT NONLINEAR HEAT CONDUCTION PROBLEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 124-138. DOI: 10.6052/0459-1879-19-323 |
[5] | Zheng Baojing, Liang Yu, Gao Xiaowei, Zhu Qianghua, Wu Zeyan. ANALYSIS FOR DYNAMIC RESPONSE OF FUNCTIONALLY GRADED MATERIALS USING POD BASED REDUCED ORDER MODEL |
[6] | Yang Zhijun, Huang Rui, Liu Haojie, Zhao Yonghui, Hu Haian, Wang Le. AEROELASTIC MODEL OF REDUCED-ORDER FOR A SLENDER MISSILE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 517-527. DOI: 10.6052/0459-1879-16-358 |
[7] | Hillslope soil erosion process model for natural rainfall events[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3). DOI: 10.6052/0459-1879-2008-3-2006-329 |
[8] | Guowei Yang, Jikang Wang. Gust response prediction with CFD-based reduced order modeling[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 145-153. DOI: 10.6052/0459-1879-2008-2-2007-230 |
[9] | Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240 |
[10] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |