EI、Scopus 收录
中文核心期刊
Chen Guoxiao, Liu Zhe, Shao Chuanping. Investigations on the control of wakes downstream of a rotary oscillating plate. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1856-1875. DOI: 10.6052/0459-1879-20-423
Citation: Chen Guoxiao, Liu Zhe, Shao Chuanping. Investigations on the control of wakes downstream of a rotary oscillating plate. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1856-1875. DOI: 10.6052/0459-1879-20-423

INVESTIGATIONS ON THE CONTROL OF WAKES DOWNSTREAM OF A ROTARY OSCILLATING PLATE

  • Received Date: December 08, 2020
  • Accepted Date: April 05, 2021
  • Available Online: April 05, 2021
  • The vortex wake of a flutter bridge deck can be simulated by the flow across a forced rotary oscillating plate. Two narrow strips of width ratio b/H = 0.33 are set symmetrically on the upper and lower sides of an oscillating plate of chord to thickness ratio B/H = 5, to suppress synchronized vortex shedding in the wake. The method of numerical simulation and experimental validation is used, and the ranges of amplitude and frequency of oscillation investigated are β = 0° ~ 10° and feH/V = 0 ~ 0.0857 respectively, and the Reynolds number Re = VH/ V = 2800, where V is velocity of on-coming flow. Three kinds of stream-wise strip positions, i.e. the front edge, mid-chord and trailing edge of the plate are studied respectively, with transverse location y/H of the strip as varying parameter. The results of experiment demonstrate that, in a certain range of strip location y/H, and β = 0° ~ 7.5°, feH/V = 0 ~ 0.08, the peak to peak ratio of power spectra of fluctuating velocities in the wakes with and without control can be much lower than 1, and the minimum is about 0.3. The results of simulation show that, in β = 0° ~ 7.5° and a certain range of feH/V, the root mean square values of fluctuating torque and lift of the plate can be considerably reduced, and the top reductions are 43% and 80% respectively, if the mid-chord strip position is in the vicinity of y/H = ±1. The 1st and 2nd eddy viscosity coefficients are introduced to link the normal and shear turbulent stresses in the wake with the gradients of amplitudes of the perturbation velocities, and a linear stability equation is derived. Stability analysis indicates that, the maximum amplification factor of perturbation ωi max can be drastically reduced, and the frequency range of perturbation with maximum growth rate is substantially narrowed by the control. The application of the strips alters the velocity profiles and promotes the eddy viscosity, therefore weakens the instability of the wake.
  • [1]
    Larsen A, Larose GL. Dynamic wind effects on suspension and cable-stayed bridges. Journal of Sound and Vibration, 2015, 334(6): 2-28
    [2]
    Bourguet R, Karniadakis GE, Triantafyllou MS. Vortex-induced vibrations of a long flexible cylinder in shear flow. Journal of Fluid Mechanics, 2011, 677: 342-382 doi: 10.1017/jfm.2011.90
    [3]
    Law SS, Yang QS, Fang YL. Experimental studies on possible vortex shedding in a suspension bridge, Part I: Structural dynamic characteristics and analysis model. Wind and Structures an International Journal, 2007, 10(6): 543-554 doi: 10.12989/was.2007.10.6.543
    [4]
    Law SS, Yang QS, Fang YL. Experimental studies on possible vortex shedding in a suspension bridge, Part II: Results when under typhoon Babs and York. Wind and Structures an International Journal, 2007, 10(6): 555-576 doi: 10.12989/was.2007.10.6.555
    [5]
    Carberry J, Govardhan R, Sheridan J, et al. Wake states and response branches of forced and freely oscillating cylinders. European Journal of Mechanics / B Fluids, 2003, 23(1): 89-97
    [6]
    Morse TL, Williamson CHK. Prediction of vortex-induced vibration response by employing controlled motion. Journal of Fluid Mechanics, 2009, 634: 5-39 doi: 10.1017/S0022112009990516
    [7]
    Govardhan R, Williamson CHK. Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics, 2000, 420: 85-130 doi: 10.1017/S0022112000001233
    [8]
    Bruno L, Fransos D. Evaluation of Reynolds number effects on flutter derivatives of a flat plate by means of a computational approach. Journal of Fluids and Structures, 2008, 24(7): 1058-1076 doi: 10.1016/j.jfluidstructs.2008.03.001
    [9]
    Matsuda K, Tokushige M, Iwasaki T. Reynolds number effects on the steady and unsteady aerodynamic forces on the bridge deck sections of long-span suspension bridge. IHI Engineering Review, 2007, 40(1): 12-26
    [10]
    Sato H, Kusuhara S, Ogi KI, et al. Aerodynamic characteristics of super long-span bridges with slotted box girder. Journal of Wind Engineering & Industrial Aerodynamics, 1999, 88(2): 297-306
    [11]
    王磊, 王海澎, 王述良等. 开洞高层建筑风压特性数值模拟研究. 武汉理工大学学报, 2012, 34(5): 122-126 (Wang Lei, Wang Haipeng, Wang Shuliang, et al. Study on wind pressure of high-rise building with openings. Journal of Wuhan University of Technology, 2012, 34(5): 122-126 (in Chinese) doi: 10.3963/j.issn.1671-4431.2012.05.025
    [12]
    王兆勇, 汤卓, 吕令毅. 龙卷风作用下开洞高层建筑风压分布特征研究. 工程建设, 2014, 46(5): 8-12 (Wang Zhaoyong, Tang Zhuo, Lv Lingyi. Study on wind pressure distribution characteristics of high-rise building with openings under tornado action. Engineering Construction, 2014, 46(5): 8-12 (in Chinese)
    [13]
    袁伟斌, 李泽彬, 叶呈敏. 局部开洞对高层建筑风荷载特性的研究. 浙江工业大学学报, 2016, 44(4): 451-455 (Yuan Weibin, Li Zebin, Ye Chengmin. Research on wind characteristics of high-rise buildings with partial openings. Journal of Zhejiang University of Technology, 2016, 44(4): 451-455 (in Chinese) doi: 10.3969/j.issn.1006-4303.2016.04.020
    [14]
    Post ML, Decker R, Sapell AR, et al. Effect of bio-inspired sinusoidal leading-edges on wings. Aerospace Science and Technology, 2018, 81: 128-140 doi: 10.1016/j.ast.2018.07.043
    [15]
    Fish FE, Battle JM. Hydrodynamic design of the humpback whale flipper. Journal of Morphology, 2010, 225(1): 51-60
    [16]
    Choi H, Jeon WP, Kim J. Control of Flow over a Bluff Body. Annual Review of Fluid Mechanics, 2008, 40(1): 113-139 doi: 10.1146/annurev.fluid.39.050905.110149
    [17]
    鲜荣, 廖海黎. 封闭式扁平钢箱梁颤振稳定性气动优化措施风洞试验研究. 世界桥梁, 2008(3): 44-47 (Xian Rong, Liao Haili. Wind tunnel test study of aerodynamic optimization measures for flutter stability of closed flat steel box girder. World Bridges, 2008(3): 44-47 (in Chinese)
    [18]
    曹丰产. 桥梁断面中间开槽对颤振稳定性的影响. 同济大学学报(自然科学版), 2002, 30(5): 551-556 (Cao Fengchan. Influence of central slot on bridge box girder’s flutter instability. Journal of Tongji University (Natural Science) , 2002, 30(5): 551-556 (in Chinese) doi: 10.3321/j.issn:0253-374X.2002.05.005
    [19]
    Kamishita M, Aso S, Karashima K, et al. Active control of aerodynamic characteristics of next-generation SST wing by lateral blowing // 38th Aerospace Sciences Meeting and Exhibition, Reno, NV, USA, Jan. 10-13, 2000
    [20]
    张卫国, 史喆羽, 李国强等. 风力机翼型动态失速等离子体流动控制数值研究. 力学学报, 2020, 52(6): 1678-1689 (Zhang Weiguo, Shi Zheyu, Li Guoqiang, et al. Numerical study on dynamic stall flow control for wind turbine airfoil using plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689 (in Chinese) doi: 10.6052/0459-1879-20-090
    [21]
    王巍, 唐滔, 卢盛鹏等. 主动射流控制水翼空化的数值模拟与分析. 力学学报, 2019, 51(6): 1752-1760 (Wang Wei, Tang Tao, Lu Shengpeng, et al. Numerical simulation and analysis of active jet control of hydrofoil cavitation. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1752-1760 (in Chinese) doi: 10.6052/0459-1879-19-222
    [22]
    王巍, 张庆典, 唐滔等. 射流对绕水翼云空化流动抑制机理研究. 力学学报, 2020, 52(1): 12-23 (Wang Wei, Zhang Qingdian, Tang Tao, et al. Mechanism investigation of water injection on suppressing hydrofoil cloud cavitation flow. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 12-23 (in Chinese) doi: 10.6052/0459-1879-19-282
    [23]
    Jones G, Santer M, Papodakis G, et al. Control of low Reynolds number flow around an airfoil using periodic surface morphing: A numerical study. Journal of Fluids & Structures, 2018, 76: 95-115
    [24]
    Jones G, Santer M, Debiasi M, et al. Control of flow separation around an airfoil at low Reynolds numbers using periodic surface morphing. Journal of Fluids & Structures, 2018, 76: 536-557
    [25]
    Omenzetter P, Wilde K, Fujino Y. Suppression of wind-induced instabilities of a long span bridge by a passive deck-flaps control system. Part II: Numerical simulations. Journal of Wind Engineering & Industrial Aerodynamics, 2000, 87(1): 81-91
    [26]
    Vipperman JS, Clark RL, Conner M, et al. Experimental active control of a typical section using a trailing-edge flap. Journal of Aircraft, 1998, 35(2): 224-229 doi: 10.2514/2.2312
    [27]
    于明礼, 文浩, 胡海岩等. 二维翼段颤振的μ控制. 航空学报, 2007, 28(2): 340-343 (Yu Mingli, Wen Hao, Hu Haiyan, et al. Active Flutter Suppression of a two-dimensional airfoil section using μ synthesis. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 340-343 (in Chinese) doi: 10.3321/j.issn:1000-6893.2007.02.017
    [28]
    Li K, Ge YJ, Guo ZW, et al. Theoretical framework of feedback aerodynamic control of flutter oscillation for long-span suspension bridges by the twin-winglet system. Journal of Wind Engineering & Industrial Aerodynamics, 2015, 145: 166-177
    [29]
    Li WC, Jin DP. Flutter suppression and stability analysis for a variable-span wing via morphing technology. Journal of Sound and Vibration, 2018, 412: 410-423 doi: 10.1016/j.jsv.2017.10.009
    [30]
    Livne E. Aircraft active flutter suppression: State of the art and technology maturation needs. Journal of Aircraft, 2018, 55(1): 410-450 doi: 10.2514/1.C034442
    [31]
    Shimada K, Ishihara T. Predictability of unsteady two-dimensional k-ε model on the aerodynamic instabilities of some rectangular prisms. Journal of Fluids & Structures, 2012, 28: 20-39
    [32]
    Strykowski PJ, Sreenivasan KR. On the formation and suppression of vortex at low Reynolds numbers. Journal of Fluid Mechanics, 1990, 218: 71-107 doi: 10.1017/S0022112090000933
    [33]
    Prasad A, Williamson CHK. A method for the reduction of bluff body drag. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 69: 155-167
    [34]
    Igarashi T, Terachi N. Drag reduction of flat plate normal to airstream by flow control using a rod. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(4-5): 359-376
    [35]
    Tsutsui T, Igarashi T. Drag reduction of a circular cylinder in an air-stream. Journal of Wind Engineering & Industrial Aerodynamics, 2002, 90(4): 527-541
    [36]
    Yen SC, Wu SF, San KC. Modulation of wake flow and aerodynamic behaviors around a square cylinder using an upstream control bar. Experimental Thermal & Fluid Science, 2016, 70: 139-147
    [37]
    陈野军, 邵传平. 尾部喷射对流向振荡柱体尾流旋涡脱落的抑制. 中国科学: 物理学 力学 天文学, 2012, 42(4): 406-420 (Chen YJ, Shao CP. Suppression of vortex shedding from an oscillating cylinder by base blowing. Science China,Physics,Mechanics &Astronomy, 2012, 42(4): 406-420 (in Chinese)
    [38]
    王赛, 邵传平. 隔离板对流向振荡圆柱尾流旋涡脱落的抑制. 力学学报, 2012, 44(4): 787-791 (Wang Sai, Shao Chuanping. Suppression of vortex shedding from an oscillating circular cylinder by a splitter plate. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4): 787-791 (in Chinese) doi: 10.6052/0459-1879-11-341
    [39]
    秦广素, 陈野军, 邵传平. 窄条控制件对流向振荡柱体尾流旋涡脱落的抑制. 中国科学: 物理学 力学 天文学, 2014, 44(9): 955-974 (Qin Guangsu, Chen Yejun, Shao Chuanping. Suppression of vortex shedding from an oscillating circular cylinder by a strip element. Science China,Physics,Mechanics &Astronomy, 2014, 44(9): 955-974 (in Chinese)
    [40]
    邵传平, 陈野军, 王赛等. 流向振荡柱体尾流控制研究进展. 力学进展, 2014, 44: 188-235 (Shao Chuanping, Chen Yejun, Wang Sai, et al. Advances in the control of wakes behind an in-line oscillating cylinder. Advances in Mechanics, 2014, 44: 188-235 (in Chinese)
    [41]
    曹梦圆, 金华斌, 邵传平. 单窄条控制件对横向振荡柱体尾流2P模式旋涡脱落的改变. 力学学报, 2018, 50(4): 734-750 (Cao Mengyuan, Jin Huabin, Shao Chuanping. The single strip-induced change of 2P-mode vortex shedding in the wake of a transversely oscillating cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 734-750 (in Chinese) doi: 10.6052/0459-1879-18-005
    [42]
    Shao CP, Wei QD. Control of vortex shedding from a square cylinder. AIAA Journal, 2008, 46(2): 397-407 doi: 10.2514/1.28367
    [43]
    Pierrehumbert RT. Local and global baroclinic instability of zonally varying flow. Journal of the Atmospheric Sciences, 1984, 41(14): 2141-2162 doi: 10.1175/1520-0469(1984)041<2141:LAGBIO>2.0.CO;2
    [44]
    Koch W. Local instability characteristics and frequency determination of self-excited wake flows. Journal of Sound & Vibration, 1985, 99(1): 53-83
    [45]
    Monkewitz PA, Huerre P, Chomaz JM. Global linear stability analysis of weakly non-parallel shear flows. Journal of Fluid Mechanics, 1993, 251(-1): 1-20
    [46]
    Chomaz JM. Global instabilities in spatially developing flows: non-normality and non-linearity. Annual Review of Fluid Mechanics, 2005, 37: 357-392 doi: 10.1146/annurev.fluid.37.061903.175810
    [47]
    Oertel H. Wakes behind blunt bodies. Annual Review of Fluid Mechanics, 1990, 22(1): 539-562 doi: 10.1146/annurev.fl.22.010190.002543
    [48]
    Hanneman K, Oertel H. Numerical simulation of the absolutely and convectively unstable wake. Journal of Fluid Mechanics, 1989, 199: 55-88
    [49]
    Leu TS, Ho CM. Control of global instability in a non-parallel near wake. Journal of Fluid Mechanics, 2000, 404: 345-378 doi: 10.1017/S0022112099007272
    [50]
    Huerre P, Monkewitz PA. Local and global instabilities in spatially developing flows. Annul Review of Fluid Uechanics, 1990, 22(1): 473-537
    [51]
    Karniadakis GE, Triantafyllou G. Three-dimensional dynamics and transition to turbulence in the wake of bluff bodies. Journal of Fluid Mechanics, 1992, 238: 1-30 doi: 10.1017/S0022112092001617
    [52]
    Williamson CHK. Vortex dynamics in the cylinder wake. Annual Review of Fluid Mechanics, 1996, 28: 477-539 doi: 10.1146/annurev.fl.28.010196.002401
    [53]
    Leontini JS, Thompson MC, Hourigan K. Three-dimensional transition in the wake of a transversely oscillating cylinder. Journal of Fluid Mechanics, 2007, 577: 79-104 doi: 10.1017/S0022112006004320
    [54]
    Henderson RD. Nonlinear dynamics and pattern formation in turbulent wake transition. Journal of Fluid Mechanics, 1997, 352: 65-112 doi: 10.1017/S0022112097007465
    [55]
    Triantafyllou GS, Triantafyllou MS, Chryssostomidis C. On the formation of vortex streets behind stationary cylinders. Journal of Fluid Mechanics, 1986, 170: 461-477 doi: 10.1017/S0022112086000976
  • Related Articles

    [1]An Xinlei, Ren Yanlan. DYNAMICS OF FILIPPOV CHAY NEURON BASED ON THRESHOLD CONTROL STRATEGY AND COUPLING SYNCHRONIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1068-1087. DOI: 10.6052/0459-1879-23-405
    [2]Ma Yexuan, Song Zhiyou, Xu Wanhai. STUDY ON VORTEX-INDUCED VIBRATION SUPPRESSION OF MARINE RISER BASED ON ENERGY TRANSFER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 901-911. DOI: 10.6052/0459-1879-21-664
    [3]Qu Zifang, Zhang Zhengdi, Peng Miao, Bi Qinsheng. NON-SMOOTH BURSTING OSCILLATION MECHANISMS IN A FILIPPOV-TYPE SYSTEM WITH MULTIPLE PERIODIC EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1145-1155. DOI: 10.6052/0459-1879-18-136
    [4]Cao Mengyuan, Jin Huabin, Shao Chuanping. THE SINGLE STRIP-INDUCED CHANGE OF 2P-MODE VORTEX SHEDDING IN THE WAKE OF A TRANSVERSELY OSCILLATING CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 734-750. DOI: 10.6052/0459-1879-18-005
    [5]Wu Yingxiang, Lin Liming, Zhong Xingfu. INVESTIGATION IN HYDRODYNAMICS OF A CIRCULAR CYLINDER WITH THE NEW SUPPRESSING SHROUD FOR VORTEX-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 307-317. DOI: 10.6052/0459-1879-14-300
    [6]Xie Limin, Chen Li. ROBUST CONTROL AND VIBRATION SUPPRESSION OF FREE-FLOATING FLEXIBLE SPACE ROBOT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1057-1065. DOI: 10.6052/0459-1879-12-156
    [7]Wang Sai, Shao Chuanping. SUPPRESSION OF VORTEX SHEDDING FROM AN OSCILLATING CIRCULAR CYLINDER BY A SPLITTER PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 787-791. DOI: 10.6052/0459-1879-11-341
    [9]EXPERIMENTAL INVESTIGATION OF THE WXKE OFAXISYMMETRIC BLUFF BODY AND ITS CONTROLBY MEANS OF ACOUSTIC FORCING~1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(6): 682-693. DOI: 10.6052/0459-1879-1999-6-1995-082
    [10]INVESTIGATION OF CONTROL LAWS FOR THE SUPPRESSION OF WING/STORE FLUTTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(3): 274-282. DOI: 10.6052/0459-1879-1991-3-1995-838
  • Cited by

    Periodical cited type(1)

    1. 张鑫,王勋年. 正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望. 力学学报. 2023(02): 285-298 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (934) PDF downloads (83) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return