1 Hopkinson B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Proceedings of the Royal Society of London A Mathematical Physical & Engineering Sciences, 1914, 213(89): 411-413
|
2 Davies RM. A critical study of the hopkinson pressure bar. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 1948, 240(821): 375-457
|
3 Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading. Proceedings of the Physical Society,1949, 62(11): 676-700
|
4 段祝平, 孙琦清, 杨大光等. 高应变率下金属动力学性能的实验与理论研究- 一维杆的实验方法及其应用. 力学进展, 1980,10(1): 1-16 (Duan Zhuping, Sun Qiqing, Yang Daguang. Experimental and theoretical study on the dynamic properties of metal under high strain rate-Experimental method and application of dimension bar. Advances in Mechanics, 1980, 10(1): 1-16 (in Chinese))
|
5李玉龙, 郭伟国,徐绯等. Hopkinson 压杆技术的推广应用. 爆炸与冲击, 2006, (26): 385-394 (Li Yulong, Guo Weiguo, Xü Fei. Popularization and application of Hopkinson pressure bar technique. Explosion and Shock Waves, 2006, (26): 385-394 (in Chinese))
|
6 Murr LE, Staudhammer KP, Meyers MA. Metallurgical Applications of Shock Wave and High Strain Rate Phenomena. New York: Dekker Mechanical Engineering, 1986
|
7 Meyer LW, Staskewitsch E, Burblies A. Adiabatic shear failure under biaxial dynamic compression/shear loading. Mechanics of Materials,1994, 17(2): 203-214
|
8 Rittel D, Lee S, Ravichandran G. A shear-compression specimen for large strain testing. Experimental Mechanics, 2002, 42(1): 58-64
|
9 Dorogoy A, Rittel D, Godinger A. A shear-tension specimen for large strain testing. Experimental Mechanics, DOI 10.1007/s11340-015-0106-1
|
10 林艺生, 傅学金, 杨月诚. 30CrMnSiA 绝热剪切带显微观察与分析. 兵器材料科学与工程, 2010, 33(6): 59-61 (Lin Yisheng, Fu Xuejin, Yang Yuecheng. Microscopic observation and analysis of adiabatic shear band 30CrMnSiA. Ordnance Material Science and Engineering, 2010, 33 (6): 59-61 (in Chinese))
|
11 Meyers MA, Chen YJ, Marquis FDS, et al. High-strain, high-strainrate behavior of tantalum. Metallurgical & Materials Transactions A, 1995, 26(10): 2493-2501
|
12 魏志刚, 李永池. 冲击载荷作用下钨合金材料绝热剪切带形成机理. 金属学报, 2005, 36(12): 1263-1268 (Wei Zhigang, Li Yongchi. The formation mechanism of adiabatic shear band formation mechanism of tungsten alloy materials under impact loading. Journal of Metals, 2005, 36 (12): 1263-1268 (in Chinese))
|
13 Hartmann KH, Kunze HD, Meyer LW. Shock Waves and Highstrain- rate Phenomena in Metals. Springer US, 1981
|
14 Ferguson WG, Hauser FE, Dorn JE. Dislocation damping in zinc single crystals. British Journal of Applied Physics, 1967, 18: 411-417
|
15 Dodd B, Bai Y. Adiabatic Shear Localization. Frontiers and Advances: Elsevier, London, 2012
|
16 Campbell JD, Ferguson WG. The temperature and strain rate dependence of shear strength of mild steel. Philosophical Magazine,1970, 21(169): 63-82
|
17 Ruiz DJ, Harding J, Ruiz C. High strain rate testing of materials - a fully validated test calibration by a hybrid numerical/experimental technique. Journal De Physique IV, 1991, C3: 465-470
|
18 Klepaczko JR. An experimental technique for shear testing at high and very high strain rates. The case of a mild steel. International Journal of Impact Engineering, 1994, 15(1): 25-39
|
19 Klepaczko JR. Remarks on impact shearing. Journal of the Mechanics & Physics of Solids, 1998, 46(10): 2139-2153
|
20 Rusinek A, Klepaczko JR. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. International Journal of Plasticity,2001, 17(1): 87-115
|
21 Guo Y, Li Y. A novel approach to testing the dynamic shear response of Ti-6Al-4V. Acta Mechanica Solida Sinica, 2012, 25(3): 299-311
|
22 Shi FF, Merle R, Hou B, et al. A critical analysis of plane shear tests under quasi-static and impact loading. International Journal of Impact Engineering, 2014, 74: 107-119
|
23 Clifton RJ, Klopp RW. Pressure-shear plate impact testing. Metals Handbook, 1985, 8(9): 230
|
24 Nemat-Nasser S. Hopkinson techniques for dynamic recovery experiments. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1991, 435(1894): 371-391
|
25 Xu ZJ, Huang FL. Comparison of constitutive models for FCC metals over wide temperature and strain rate ranges with application to pure copper. International Journal of Impact Engineering, 2015, 79:65-74
|
26 Culver RS. Thermal Instability Strain in Dynamic Plastic Deformation. In: Rohde RW, eds. Metallurgical Effects at High Strain Rates, New York, NY: Plenum Press, 1973. 519-530.
|