EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

接地惯容式减振器对悬臂输流管稳定性 和动态响应的影响研究

郭梓龙 王琳 倪樵 贾青青 杨文正

郭梓龙, 王琳, 倪樵, 贾青青, 杨文正. 接地惯容式减振器对悬臂输流管稳定性 和动态响应的影响研究[J]. 力学学报, 2021, 53(6): 1769-1780. doi: 10.6052/0459-1879-21-105
引用本文: 郭梓龙, 王琳, 倪樵, 贾青青, 杨文正. 接地惯容式减振器对悬臂输流管稳定性 和动态响应的影响研究[J]. 力学学报, 2021, 53(6): 1769-1780. doi: 10.6052/0459-1879-21-105
Guo Zilong, Wang Lin, Ni Qiao, Jia Qingqing, Yang Wenzheng. RESEARCH ON THE INFLUENCE OF GROUNDED INERTER-BASED ABSORBER ON THE STABILITY AND DYNAMIC RESPONSE OF CANTILEVERED PIPE CONVEYING FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1769-1780. doi: 10.6052/0459-1879-21-105
Citation: Guo Zilong, Wang Lin, Ni Qiao, Jia Qingqing, Yang Wenzheng. RESEARCH ON THE INFLUENCE OF GROUNDED INERTER-BASED ABSORBER ON THE STABILITY AND DYNAMIC RESPONSE OF CANTILEVERED PIPE CONVEYING FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1769-1780. doi: 10.6052/0459-1879-21-105

接地惯容式减振器对悬臂输流管稳定性 和动态响应的影响研究

doi: 10.6052/0459-1879-21-105
基金项目: 1)国家自然科学基金资助项目(12072119);国家自然科学基金资助项目(11972167)
详细信息
    作者简介:

    2)王琳, 教授, 主要研究方向: 非线性动力学、动力学与控制. E-mail: wanglindds@hust.edu.cn

    通讯作者:

    王琳

  • 中图分类号: O322

RESEARCH ON THE INFLUENCE OF GROUNDED INERTER-BASED ABSORBER ON THE STABILITY AND DYNAMIC RESPONSE OF CANTILEVERED PIPE CONVEYING FLUID

  • 摘要: 输流管道广泛应用于机械、航空、核电和石油等重要工程领域.为防止管道结构因流致振动破坏造成的损失, 很有必要对其稳定性、动力学响应及其调控进行深入研究.本文提出一种由惯容器、弹簧和阻尼器并联组成的减振器模型, 研究了这种接地惯容减振器对悬臂输流管稳定性和非线性振动的影响. 首先, 基于哈密顿原理给出了带有接地惯容减振器非保守系统的非线性动力学模型; 然后, 利用高阶伽辽金方法对非线性方程进行离散化; 最后, 分别从线性和非线性角度分析了不同减振器参数下输流管道的被动控制效果, 着重讨论了惯容系数和减振器安装位置对悬臂管稳定性和动态响应的影响机制.线性理论模型的研究结果显示, 接地惯容减振器可显著影响悬臂管的失稳临界流速, 故通过调节减振器参数能有效提高输流管道的稳定性;惯容系数和弹簧刚度对系统稳定性的控制效果还与减振器的安装位置密切相关.非线性理论模型的分析结果显示, 惯容系数和减振器位置对输流管的非线性动态响应也有显著影响, 且这种影响还依赖于管道的流速取值; 在某些参数条件下, 减振器还可使输流管道由周期运动演化为复杂的混沌行为. 本文研究结果表明, 通过设计合理的惯容式减振器参数, 可提升悬臂输流管道的稳定性并有效抑制其颤振幅值.

     

  • [1] Paidoussis MP. Fluid-structure interactions: Slender Structures and Axial Flow(Vol.1). 2 ed. San Diego: Elsevier Academic Press, 2014
    [2] Wadham-Gagnon M, Paidoussis MP, Semler C. Dynamics of cantilevered pipes conveying fluid. Part 1: Nonlinear equations of three-dimensional motion. Journal of Fluids Structures, 2007, 23(4): 545-567
    [3] 王乙坤, 王琳. 分布式运动约束下悬臂输液管的参数共振研究. 力学学报, 2019, 51(2): 558-568

    (Wang Yikun, Wang Lin. Parametricresonance of a cantilevered pipe conveying fluid subjected to distributed motion constraints. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 558-568 (in Chinese))
    [4] Semler C, Li GX, Paidoussis MP. The non-linear equations of motion of pipes conveying fluid. Journal of Sound Vibration, 1994, 169(5): 577-599
    [5] 易浩然, 周坤, 代胡亮 等. 含集中质量悬臂输流管的稳定性与模态演化特性研究. 力学学报, 2020, 52(6): 1800-1810

    (Yi Haoran, Zhou Kun, Dai Huliang, et al. Stability and mode evolution characteristics of a cantilevered fluid-conveying pipe attached with the lumped mass. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1800-1810 (in Chinese))
    [6] Peng G, Xiong Y, Gao Y, et al. Non-linear dynamics of a simply supported fluid-conveying pipe subjected to motion-limiting constraints: Two-dimensional analysis. Journal of Sound and Vibration, 2018, 435: 192-204
    [7] 金基铎, 邹光胜, 张宇飞. 悬臂输流管道的运动分岔现象和混沌运动. 力学学报, 2002, 34(6): 863-873

    (Jin Jiduo, Zhou Guangsheng, Zhang Yufei, et al. Bifurcations and chaotic motions of a cantilevered pipe conveying fluid. Chinese Journal of Theoretical and Applied Mechanics, 2002, 34(6): 863-873 (in Chinese))
    [8] Dai HL, Wang L. Dynamics and stability of magnetically actuated pipes conveying fluid. International Journal of Structural Stability and Dynamics, 2016, 16(6): 1550026
    [9] He W, Meng T, Huang D, et al. Adaptive boundary iterative learning control for an Euler-Bernoulli beam system with input constraint. IEEE Trans Neural Netw Learn Syst, 2018, 29(5): 1539-1549
    [10] 张登博, 唐有绮, 陈立群. 非齐次边界条件下轴向运动梁的非线性振动. 力学学报, 2019, 51(1): 218-227

    (Zhang Dengbo, Tang Youqi, Chen Liqun. Nonlinear vibrations of axially moving beams with nonhomogeneous boundary conditions. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 218-227 (in Chinese))
    [11] He W, Nie S, Meng T, et al. Modeling and vibration control for a moving beam with application in a drilling riser. IEEE Transactions on Control Systems Technology, 2017, 25(3): 1036-1043
    [12] Liu ZY, Wang L, Dai HL, et al. Nonplanar vortex-induced vibrations of cantilevered pipes conveying fluid subjected to loose constraints. Ocean Engineering, 2019, 178(APR.15): 1-19
    [13] 顾伟, 张博, 丁虎 等. 2:1内共振条件下变转速预变形叶片的非线性动力学响应. 力学学报, 2020, 52(4): 1131-1142

    (Gu Wei, Zhang Bo, Ding Hu, et al. Nonlinear dynamic response of pre-deformed blade with variable rotational speed under 2:1 internal resonance. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1131-1142 (in Chinese))
    [14] Sazesh S, Shams S. Vibration analysis of cantilever pipe conveying fluid under distributed random excitation. Journal of Fluids and Structures, 2019, 87: 84-101
    [15] 张文勇, 牛牧青, 陈立群. 含串联非线性能量汇的整星系统吸振效果研究. 振动与冲击, 2020, 39(21): 151-155

    (Zhang Wenyong, Niu Muqing, Chen Liqun. Vibration absorption effect of whole satellite system with series nonlinear energy sink. Journal of the Vibration and Shock, 2020, 39(21): 151-155 (in Chinese))
    [16] Yang Y, Xu D, Liu Q. Milling vibration attenuation by eddy current damping. The International Journal of Advanced Manufacturing Technology, 2015, 81(1-4): 445-454
    [17] 王在华, 胡海岩. 具有采样反馈的力控制系统稳定性. 力学学报, 2016, 48(6): 1372-1381

    (Wang Zaihua, Hu Haiyan. Stability of a force control system with sampled-data feedback. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1372-1381 (in Chinese))
    [18] Ji N, Liu Z, Liu J, et al. Vibration control for a nonlinear three-dimensional Euler-Bernoulli beam under input magnitude and rate constraints. Nonlinear Dynamics, 2018, 91(4): 2551-2570
    [19] Abbasnejad B, Shabani R, Rezazadeh G. Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid. Microfluidics and Nanofluidics, 2015, 19(3): 577-584
    [20] Ge SS, Zhang S, He W. Vibration control of an Euler-Bernoulli beam under unknown spatiotemporally varying disturbance. International Journal of Control, 2011, 84(5): 947-960
    [21] Szmidt T, Pisarski D, Konowrocki R. Semi-active stabilisation of a pipe conveying fluid using eddy-current dampers: State-feedback control design, experimental validation. Meccanica, 2019, 54(6): 761-777
    [22] 彭海波, 申永军, 杨绍普. 一种含负刚度元件的新型动力吸振器的参数优化. 力学学报, 2015, 47(2): 320-327

    (Peng Haibo, Shen Yongjun, Yang Shaopu. Parameters optimization of a new type of dynamic vibration absorber with negative stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 320-327 (in Chinese))
    [23] Wong WO, Tang SL, Cheung YL, et al. Design of a dynamic vibration absorber for vibration isolation of beams under point or distributed loading. Journal of Sound and Vibration, 2007, 301(3-5): 898-908
    [24] Rechenberger S, Mair D. Vibration control of piping systems and structures using tuned mass dampers//Proceedings of the ASME Pressure Vessels and Piping Conference, Waikoloa, Hawaii, USA, 2017
    [25] 宾滔, 王修勇, 方豪杰 等. 调谐双质阻尼器减振性能分析. 噪声与振动控制, 2020, 40(4): 223-226

    (Bin Tao, Wang Xiuyong, Fang Haojie, et al. Noise and Vibration Control, 2020, 40(4): 223-226 (in Chinese))
    [26] Yang TZ, Yang XD, Li Y, et al. Passive and adaptive vibration suppression of pipes conveying fluid with variable velocity. Journal of Vibration and Control, 2013, 20(9): 1293-1300
    [27] Duan N, Fang B, Teng Y. Passive vibration control of pipes conveying fluid with parallel nonlinear energy sinks//International Congress on Computation Algorithms in Engineering, Bangkok, Thailand, 2016
    [28] Zhou K, Xiong FR, Jiang NB, et al. Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dynamics, 2018, 95(2): 1435-1456
    [29] Gourdon E, Alexander NA, Taylor CA, et al. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results. Journal of Sound and Vibration, 2007, 300(3-5): 522-551
    [30] Li H, Zhang P, Song G, et al. Robustness study of the pounding tuned mass damper for vibration control of subsea jumpers. Smart Materials and Structures, 2015, 24(9): 095001
    [31] 叶昆, 舒率. 基于性能需求的基础隔震结构附加调谐惯容阻尼器的优化设计研究. 动力学与控制学报, 2020, 18(5): 40-45

    (Ye Kun, Shu Shuai. Optimal design of base-isolated structure with supplemental tuned inerter damper based on performance requirement. Journal of Dynamics and Control, 2020, 18(5): 40-45 (in Chinese))
    [32] Shi X, Zhu S. A comparative study of vibration isolation performance using negative stiffness and inerter dampers. Journal of the Franklin Institute, 2019, 356(14): 7922-7946
    [33] Xu K, Bi K, Han Q, et al. Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study. Engineering Structures, 2019, 182(MAR.1): 101-111
    [34] Zhang Z, Lu ZQ, Ding H, et al. An inertial nonlinear energy sink. Journal of Sound and Vibration, 2019, 450: 199-213
    [35] Sun L, Hong D, Chen L. Cables interconnected with tuned inerter damper for vibration mitigation. Engineering Structures, 2017, 151(Nov.15): 57-67
    [36] Wang Y, Li HX, Cheng C, et al. A nonlinear stiffness and nonlinear inertial vibration isolator. Journal of Vibration and Control, 2020, doi: 10.1177/1077546320940924
    [37] Shi X, Zhu S. Dynamic characteristics of stay cables with inerter dampers. Journal of Sound and Vibration, 2018, 423: 287-305
    [38] 陈杰, 孙维光, 吴杨俊 等. 基于惯容负刚度动力吸振器的梁响应最小化. 振动与冲击, 2020, 39(8): 15-22

    (Chen Jie, Sun Weiguang, Wu Yangjun, et al. Minimization of beam response using inerter- based dynamic vibration absorber with negative stiffness. Journal of the Vibration and Shock, 2020, 39(8): 15-22 (in Chinese))
  • 加载中
计量
  • 文章访问数:  596
  • HTML全文浏览量:  69
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-17
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回