EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hamel 框架下几何精确梁的离散动量守恒律

高山 史东华 郭永新

高山, 史东华, 郭永新. Hamel 框架下几何精确梁的离散动量守恒律[J]. 力学学报, 2021, 53(6): 1712-1719. doi: 10.6052/0459-1879-21-092
引用本文: 高山, 史东华, 郭永新. Hamel 框架下几何精确梁的离散动量守恒律[J]. 力学学报, 2021, 53(6): 1712-1719. doi: 10.6052/0459-1879-21-092
Gao Shan, Shi Donghua, Guo Yongxin. DISCRETE MOMENTUM CONSERVATION LAW OF GEOMETRICALLY EXACT BEAM IN HAMEL'S FRAMEWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1712-1719. doi: 10.6052/0459-1879-21-092
Citation: Gao Shan, Shi Donghua, Guo Yongxin. DISCRETE MOMENTUM CONSERVATION LAW OF GEOMETRICALLY EXACT BEAM IN HAMEL'S FRAMEWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1712-1719. doi: 10.6052/0459-1879-21-092

Hamel 框架下几何精确梁的离散动量守恒律

doi: 10.6052/0459-1879-21-092
基金项目: 1)国家自然科学基金资助项目(11872107);国家自然科学基金资助项目(11972177)
详细信息
    作者简介:

    3)郭永新, 教授, 主要研究方向: 分析力学. E-mail: yxguo@lnu.edu.cn
    2)史东华, 副教授, 主要研究方向: 几何力学与控制. E-mail: dshi@bit.edu.cn;

    通讯作者:

    史东华

    郭永新

  • 中图分类号: O316

DISCRETE MOMENTUM CONSERVATION LAW OF GEOMETRICALLY EXACT BEAM IN HAMEL'S FRAMEWORK

  • 摘要: Hamel场变分积分子是一种研究场论的数值方法, 可以通过使用活动标架规避几何非线性带来的计算复杂度, 同时数值上具有良好的长时间数值表现和保能动量性质. 本文在一维场论框架下, 以几何精确梁为例, 从理论上探究Hamel场变分积分子的保动量性质. 具体内容包括: 利用活动标架法对几何精确梁建立动力学模型, 通过变分原理得到其动力学方程, 利用其动力学方程及Noether定理得到系统动量守恒律; 将几何精确梁模型离散化, 通过变分原理得到其Hamel场变分积分子, 利用Hamel场变分积分子和离散Noether定理得到离散动量守恒律, 并给出离散动量的一阶近似表达式; Hamel场变分积分子可在计算中利用系统对称性消除系统运动带来的非线性问题, 但此框架中离散对流速度、离散对流 应变及位形均不共点, 而这种错位导致离散动量中出现级数项, 本文对几何精确梁的离散动量与连续形式的关系及其应 用进行了讨论, 并通过算例验证了结论. 上述证明方法也同样适用一般经典场论场景下的Hamel场变分积分子. Hamel场变分积分子的动量守恒为进一步研究其保结构性质提供了参考依据.

     

  • [1] Goriely A. The Mathematics and Mechanics of Biological Growth. New York: Springer, 2017
    [2] Moulton DE, Lessinnes T, Goriely A. Morphoelastic rods III: Differential growth and curvature generation in elastic filaments. Journal of the Mechanics and Physics of Solids, 2020, 142: 10422
    [3] Ahn J, Rail Z. A rod-beam system with dynamic contact and thermal exchange condition. Applied Mathematics and Computation, 2021, 388: 125542
    [4] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019, 51(6): 1565-1586

    (Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586 (in Chinese))
    [5] Rodriguez C. Networks of geometrically exact beams: Well-posedness and stabilization. Mathematical Control and Related Fields, doi: 10.3934/mcrf.2021002
    [6] Yu M, Nie X, Yang G, et al. Fixed-point fluid structure interaction analysis based on geometrically exact approach. Scientific Reports, 2020, 10: 1-16
    [7] 王亮, 安志朋, 史东华. 几何精确梁的Hamel场变分积分子. 北京大学学报: 自然科学版, 2016, 52(4): 692-698

    (Wang Liang, An Zhipeng, Shi Donghua. Hamel's field variational integrator of geometrically exact beam. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4): 692-698 (in Chinese))
    [8] 刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算. 力学学报, 2021, 53(1): 213-233

    (Liu Cheng, Hu Haiyan. Dynamic modeling and computation for flexible multibody systems based on the local frame of Lie group. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 213-233 (in Chinese))
    [9] Simo JC, Vu-Quoc L . On the dynamics in space of rods undergoing large motions - A geometrically exact approach. Computer Methods in Applied Mechanics and Engineering, 1988, 66(2): 125-161
    [10] Romero I, Armero F. An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. International Journal for Numerical Methods in Engineering, 2002, 54(12): 1683-1716
    [11] Simo JC, Posbergh TA, Marsden JE. Stability of coupled rigid body and geometrically exact rods: Block diagonalization and the energy-momentum method. Physics Reports, 1990, 193(6): 279-360
    [12] Trivedi D, Lotfi A, Rahn CD. Geometrically exact models for soft robotic manipulators. IEEE Transactions on Robotics, 2008, 24(4): 773-780
    [13] Farokhi H, Ghayesh MH. Geometrically exact extreme vibrations of cantilevers. International Journal of Mechanical Sciences, 2020, 168: 105051
    [14] Bishop TC, Cortez R, Zhmudsky OO. Investigation of bend and shear waves in a geometrically exact elastic rod model. Journal of Computational Physics, 2004, 193(2): 642-665
    [15] Marden JE, West M. Discrete mechanics and variational integrators. Acta Numerica, 2001, 10: 357-514
    [16] Demoures F, Gay-Balmaz F, Leyendecker S, et al. Discrete variational Lie group formulation of geometrically exact beam dynamics. Numerische Mathematik, 2015, 130: 73-123
    [17] Ball KR, Zenkov DV. Hamel's formalism and variational integrators. Fields Institute Communications, 2015, 73: 477-506
    [18] Shi D, Yakov BK, Zenkov DV, et al. Hamel's formalism for infinite-dimensional mechanical systems. Journal of Nonlinear Science, 2017, 27(1): 241-283
    [19] Shi D, Zenkov DV, Bloch AM. Hamel's formalism for classical field theories. Journal of Nonlinear Science, 2020, 30: 1307-1353
    [20] An Z, Gao S, Shi D, et al. A variational integrator for the Chaplygin-Timoshenko sleigh. Journal of Nonlinear Science, 2020, 30(4): 1381-1419
    [21] 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法. 杭州: 浙江科学技术出版社, 2003

    (Feng Kang, Qin Mengzhao. Symplectic Geometric Algorithms for Hamiltonian Systems. Hangzhou: Zhejiang Science and Technology Press, 2003 (in Chinese))
    [22] Kinoshita H, Yoshida H, Nakai H. Symplectic integrators and their application to dynamical astronomy. Celestial Mechanics and Dynamical Astronomy, 1991, 50: 59-71
    [23] 赵长印, 廖新浩, 刘林. 辛积分方法在动力天文中的应用. 天文学报, 1992(1): 36-47

    (Zhao Zhangyin, Liao Xinhao, Liu Lin. Application of symplectic integrators to dynamical astronomy, Acta Astronomica Sinica, 1992(1): 36-47 (in Chinese))
    [24] 丁培柱, 李延欣, 吴承埙 等. 量子系统的辛算法. 吉林大学自然科学学报, 1993(4): 75-78

    (Ding Peizhu, Li Yanxin, Wu Chengxun, et al. Sympletic algorithm of quantum systems. Acta Scientiarum Naturalium Universitatis Jilinensis, 1993(4): 75-78 (in Chinese))
    [25] Yee KS. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on Antennas and Propagation, 1966, 14(5): 302-307
    [26] Stern A, Tong Y, Desbrun M, et al. Geometric computational electrodynamics with variational integrators and discrete differential forms. Fields Institute Communications, 2015, 73: 437-475
    [27] 钟万勰. 计算结构力学与最优控制. 大连: 大连理工大学出版社, 1993

    (Zhong Wanxie. Computatinal Structural Mechanics and Optimal Control. Dalian: Dalian University of Technology Press, 1993 (in Chinese))
    [28] 张素英, 邓子辰. Poisson流形上广义Hamilton系统的保结构算法. 西北工业大学学报, 2002, 20(4): 625-628

    (Zhang Suying, Deng Zichen. An algorithm for preserving the generalized poisson bracket structure of generalized Hamiltonian system. Journal of Northwestern Polytechnical University, 2002, 20(4): 625-628 (in Chinese))
    [29] 刘世兴, 郭永新, 刘畅. 一类特殊非完整力学系统的辛算法计算. 物理学报, 2008, 3: 1311-1315

    (Liu Shixing, Guo Yongxin, Liu Chang. A special nonholonomic mechanical system calculated by symplectic method. Acta Physica Sinica, 2008, 3: 1311-1315 (in Chinese))
    [30] 满淑敏, 高强, 钟万勰 等. 非完整约束Hamilton动力系统保结构算法. 应用数学和力学, 2020, 41(6): 581-590

    (Man Shumin, Gao Qiang, Zhong Wanxie. A structure-preserving algorithm for Hamiltonian systems with nonholonomic constraints. Applied Mathematics and Mechanics, 2020, 41(6): 581-590 (in Chinese))
    [31] Bloch AM. Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics. New York: Springer, 2015
    [32] Michor PW. Topics in Differential Geometry. American Mathematical Society, 2008
    [33] Demoures F. Lie Group and Lie Algebra Variational Integrators for Flexible Beam and Plate in école. Polytechnique Fédérale de Lausanne, 2012
  • 加载中
计量
  • 文章访问数:  829
  • HTML全文浏览量:  108
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回