EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰激振动中的锁频共振分析

黄国君

黄国君. 冰激振动中的锁频共振分析[J]. 力学学报, 2021, 53(3): 693-702. doi: 10.6052/0459-1879-21-087
引用本文: 黄国君. 冰激振动中的锁频共振分析[J]. 力学学报, 2021, 53(3): 693-702. doi: 10.6052/0459-1879-21-087
Huang Guojun. STUDY ON FREQUENCY LOCK-IN RESONANCE IN ICE-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 693-702. doi: 10.6052/0459-1879-21-087
Citation: Huang Guojun. STUDY ON FREQUENCY LOCK-IN RESONANCE IN ICE-INDUCED VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 693-702. doi: 10.6052/0459-1879-21-087

冰激振动中的锁频共振分析

doi: 10.6052/0459-1879-21-087
基金项目: 1) 国家自然科学基金资助项目(10772184)
详细信息
    作者简介:

    2) 黄国君, 副研究员, 主要研究方向: 结构动力学和材料力学. E-mail: ghuang@imech.ac.cn

    通讯作者:

    黄国君

  • 中图分类号: U260.17

STUDY ON FREQUENCY LOCK-IN RESONANCE IN ICE-INDUCED VIBRATION

  • 摘要: 冰激振动(ice-induced vibration, IIV)中的锁频共振严重威胁结构安全, 恶化人员工作环境,然而对其机理的认识仍然不清.本文基于作者和合作者以前建立的一个冰间歇破坏型IIV模型(黄国君和刘鹏飞,2009)对柔性结构的锁频共振机理进行了理论研究.应用该模型预报了发生在一个冰速区间内的锁频共振现象,并研究了结构和冰特性参数:结构阻尼和刚度以及冰的压缩刚度和冰破坏的破坏区长度、韧脆转换速度和随机性对IIV及锁频共振的影响,在此基础上探索了锁频共振机理. 研究表明: 在锁频共振冰速区间内,结构响应和冰力主频都锁定在结构固有频率,然而不同冰速下的频谱结构和振动形态各异,从常规单频共振到多频共振、从等幅振动到振幅周期性变化的拍振动,呈现出丰富的动力学特征;结构和冰特性参数可改变锁频共振冰速区间的长度和位置以及结构振幅,冰破坏的随机性和应变率效应发挥着一种竞争作用;锁频共振来源于冰破坏的应变率效应,其力学机制是频率调制和对结构-冰动能传递的非对称性正反馈效应放大的双重作用,本文分析揭示的这一新的锁频共振机理属于耦合振动,与传统的负阻尼自激振动机制有着本质区别.本文分析结果及对锁频共振机理的认识有助于相关实验研究和冰区结构设计以及IIV减振技术的研发.

     

  • [1] Feng CC. The measurement of vortex-induced effects in flow past stationary and oscillating circulator and D-section cylinder. [Master Thesis]. Columbia: University of British Columbia, 1968
    [2] Dempsey JP. Research trends in ice mechanics. Int. J. Solids Struct, 2000,37:131-153
    [3] Engelbrektson A. Observations of a resonance vibrating lighthouse structure in moving ice//Proc. 7th POAC Conf., Helsinki, Finland, 1983,II:855-864
    [4] M??tt?nen A. Dynamic ice structure interaction during continuous crushing. U.S Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA 03755, CRRE, 5:53
    [5] Tsuchiya M, Kanie S, Ikejiri K. An experimental study on ice-structure interaction//Proc. Of the 17th Offshore Technology Conference, Astrodomain, Houston, Texas, 1985,4:321-327
    [6] Blenkarn KA. Measurement and analysis of ice force on cook inlet structures// Proceedings of the Second Offshore Technology Conference (OTC) No. 1261, Dallas, TX, 1970-04-22-24, 1970, II:365-378
    [7] M??tt?nen M. On conditions for the rise of self-excited ice induced autonomous oscillations in slender marine pile structures. Finnish-Swedish Winter Navigation Research Board, 1978, Research Report No.25.
    [8] Peyton HR. Sea ice Forces. Ice pressure against structures. Technical Memorandum, National research Council of Canada, Ottawa, Canada, 1968
    [9] Hossain R, Taylor R, Moro L. An assessment of sensitivity of the self-excited modelling approach for simulating dynamic ice-structure interactions to changes in temperature and scale effects. Ocean Engineering, 2018,165:410-425
    [10] Dostal L, Lourens EM, Metrikine A. Nonlinear model parameter identification for ice-induced vibrations. Procedia Engineering, 2017,199:583-588
    [11] 朱本瑞, 孙超, 黄焱. 海上单桩风机结构冰激振动响应分析. 土木工程学报, 2021,54(1):88-96

    (Zhu Benrui, Sun Chao, Huang Yan. Ice-induced vibration response analysis of monopile offshore wind turbine. China Civil Engineering Journal, 2021,54(1):88-96 (in Chinese))
    [12] Matlock G, Dawkins W, Panak J. Analytical model for ice-structure interaction. ASCE J. Eng. Mech., 1971, EM 4:1083-1092
    [13] Sodhi DS. A theoretical model for ice-structure interaction//Proc. OMAE-94 Conf., ASME, New York. 1994,IV:29-34
    [14] Toyama Y, Sensu T, Minami M, et al. Model tests on ice-induced self-excited vibration of cylindrical structures// Proceedings of the 7th International Conference on Port and Ocean Engineering under Arctic conditions, Helsinki, Finland, 1983, II:834-844
    [15] Toyama Y, Sensu T, Minami M, et al. Analysis of ice induced vibration on a flexible structure. Appl. Math. Modeling, 1991, 15:632-638 92: 117123
    [16] Huang G, Liu P. A dynamic model for ice-induced vibration of structures. J. Offshore Mech. Arctic Eng. 2009,131(1):011501
    [17] Jeong S, Baddour N. Comparison of characteristic failure frequency models for ice induced vibrations. JP Journal of Solids and Structures, 2010, (4)3:115-137
    [18] Jeong S, Baddour N. Vibrations due to flow-driven repeated impacts. In$:$ Mathematical Problems in Engineering. Hindawi Publishing Corporation. 2013,6:1-17
    [19] M??tt?nen M. Ice induced frequency lock-in vibrations - converging towards consensus// Proceedings of the 23 rd International Conference on Port and Ocean Engineering under Arctic Conditions, Trondheim, Norway, 2015: 1-11
    [20] Tsuprik VG. The forming cyclic loads on the offshore structures during ice field edge fracture. Civil Engineering, 2017,6:118-139
    [21] Xu J, Oterkus E. A dynamic ice-structure interaction model for ice-induced vibrations by using van der pol equation. Ocean Engineering, 2016,128:147-152
    [22] Hendrikse H, Kuiper GL, Metrikine AV. Ice-induced vibrations of flexible offshore structures: the effect of load randomness, high ice velocities and higher structural modes//Proc. 21 st Int. Conf. Port Ocean Eng. Arct. Cond.,Montreal, Canada, 2011. POAC11-031
    [23] Hendrikse H, Renting FW, Metrikine AV. Analysis of the fatigue life of offshore wind turbine generators under combined ice- and aerodynamic loading// Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. June 8-13, 2014, San Francisco, California, USA, 2014-6-8-13 June 8-13, 2014, OMAE2014-23884:1-10
    [24] Hendrikse H, Metrikine AV. Interpretation and prediction of ice induced vibrations based on contact area variation. Int. J. Solids Struct., 2015, 75-76:336-348
    [25] Hendrikse H, Nord T. Dynamic response of an offshore structure interacting with an ice floe failing in crushing. Marine Structures, 2019,65:271-290
    [26] Hendrikse H. Ice-induced vibrations of vertically sided offshore structures. [PhD Thesis]. Delft: Delft University of Technology, 2017
    [27] Abrasion AK, Vakulenko SA, Horssen WTV. On a simple oscillator problem describing ice-induced, vibrations of an offshore structure. Nonlinear Dyn. 2019,98:151-166
    [28] Xu JZ, Wang LY. Ice force oscillator model and its numerical solution//Proc. 7th Intern. Offshore Mechanics and Arctic Engineering (OMAE) Symposium, Houston, TX, USA, 1988, Vol. IV:171-176
    [29] 王翎羽, 徐继祖. 冰与结构动力相互作用的理论分析模型. 海洋学报, 1993,15(3):140-146

    (Wang Lingyu, Xu Jizu. Theoretical study model for dynamic interaction of ice and structures. Acta Oceanologica Sinica, 1993,15(3):140-146 (in Chinese))
    [30] Korzhavin KN. Action of ice on engineering structures. U.S Army Cold Regions Research and Engineering Laboratory, Hanover, NH, USA, CRREL Draft Translation No. 260, 1962
    [31] Iliescu D. Schulson EM. Brittle compressive failure of ice: monotonic versus step-loading//Proc. 18th Int. OMAE Conf., CD-ROM: OMAE99-1170, 1999,14
    [32] 刘延柱, 陈文良, 陈立群. 振动力学. 北京: 高等教育出版社, 1998

    (Liu Yanzhu, Chen Wenliang, Chen Liqun. Mechanics of Vibrations. Beijing: Higher Education Press, 1998 (in Chinese))
  • 加载中
计量
  • 文章访问数:  293
  • HTML全文浏览量:  46
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-03
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回