[1] |
张慧洁, 郝瑞林. 电网中动态电压恢复器的非线性控制研究. 电子测试, 2019(Z1): 14-16(Zhang Huijie, Hao Ruilin. Research on dynamic voltage restorer based on nonlinear control theory in the power grid. Electronic Test, 2019(Z1): 14-16 (in Chinese))
|
[2] |
Yang CH, Tsai CY. Nonlinear dynamic analysis of finance system and its analog/digital circuit implementation. Journal of Computational and Theoretical Nanoscience, 2015, 12(10): 3538-3546
|
[3] |
Navarro LG, Jurado FL, Castillo MJ, et al. Assessment of autonomous nerve system through non-linear heart rate variability outcomes in sedentary healthy adults. Peer J, 2020, 8(11): e10178
|
[4] |
张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望. 航空学报, 2021, 42(4): 1-51(Zhang Weiwei, Kou Jiaqing, Liu Yilang. Prospect of artificial intelligence empowering fluid mechanics. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 1-51 (in Chinese))
|
[5] |
Crutchfield JP, McNamara BS. Equations of motion from a data series. Complex Systems, 1987, 1(121): 417-452
|
[6] |
洪泽华, 章佳君, 周金鹏 等. 复杂目标红外辐射特性大数据知识表示及建模方法. 上海航天, 2020, 37(6): 52-57(Hong Zehua, Zhang Jiajun, Zhou Jinpeng, et al. Big Data knowledge representation and modeling method for infrared radiation characteristics of comp. Aerospace Shanghai, 2020, 37(6): 52-57 (in Chinese))
|
[7] |
曾贲, 房霄, 孔德帅 等. 一种数据驱动的对抗博弈智能体建模方法. 系统仿真学报, 2020: 1-7(Zeng Bi, Fang Xiao, Kong Deshuai, et al. A data-driven modeling method for game adversity agent. Journal of System Simulation, 2020: 1-7 (in Chinese))
|
[8] |
李星. 数据驱动建模中精度与泛化平衡问题研究. [硕士论文]. 西安: 西安理工大学, 2020(Li Xing. Research on the balance between accuracy and generalization in data-driven modeling. [Master Thesis]. Xi'an: Xi'an University of Technology, 2020 (in Chinese))
|
[9] |
赵丹. 非线性系统即时学习建模方法研究. [硕士论文]. 镇江: 江苏大学, 2017(Zhao Dan. Research on just-in-time learning modeling for nonlinear systems. [Master Thesis]. Zhenjiang: Jiangsu University, 2017 (in Chinese))
|
[10] |
González-García R, Rico-Martínez R, Kevrekidis IG. Identification of distributed parameter systems: A neural net based approach. Computers & Chemical Engineering, 1998, 22: S965-S968
|
[11] |
Kevrekidis IG, Gear CW, Hyman JM, et al. Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to perform system-level analysis. Communications in Mathematical Sciences, 2003, 1(4): 715-762
|
[12] |
Daniels BC, Nemenman I. Automated adaptive inference of phenomenological dynamical models. Nature Communications, 2015, 6(1): 1-8
|
[13] |
Bongard J, Lipson H. Automated reverse engineering of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 2007, 104(24): 9943-9948
|
[14] |
Tibshirani R. Regression shrinkage and selection via the lasso. Stat. Soc. B, 1996, 58(1): 267-288
|
[15] |
Tibshirani R. The lasso method for variable selection in the Cox model. Statistics in Medicine, 1997, 16(4): 385-395
|
[16] |
Schmidt M, Lipson H. Distilling free-form natural laws from experimental data. Science, 2009, 324(5923): 81-85
|
[17] |
Brunton SL, Kutz JN. Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. England: Cambridge University Press, 2019
|
[18] |
Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(15): 3932-3937
|
[19] |
Rudy SH, Brunton SL, Proctor JL, et al. Data-driven discovery of partial differential equations. Science Advances, 2017, 3(4): e1602614
|
[20] |
胡军, 刘全, 倪国喜. 时变偏微分方程的贝叶斯稀疏识别方法. 计算物理, 2021, 38(1): 25-34(Hu Jun, Liu Quan, Ni Guoxi. Bayesian sparse identification of time-varying partial differential equations. Chinese Journal of Computational Physics, 2021, 38(1): 25-34 (in Chinese))
|
[21] |
Berkooz G, Holmes P, Lumley JL. The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics, 1993, 25(1): 539-575
|
[22] |
Brunton SL, Noack BR, Koumoutsakos P. Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 2020, 52: 477-508
|
[23] |
Chang H, Zhang D. Machine learning subsurface flow equations from data. Computational Geosciences, 2019, 23(5): 895-910
|
[24] |
Raissi M, Yazdani A, Karniadakis GE. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science, 2020, 367(6481): 1026-1030
|
[25] |
Zhang J, Ma W. Data-driven discovery of governing equations for fluid dynamics based on molecular simulation. Journal of Fluid Mechanics, 2020, 892: A5
|
[26] |
Schmelzer M, Dwight RP, Cinnella P. Discovery of algebraic Reynolds-stress models using sparse symbolic regression. Flow Turbulence and Combustion, 2020, 104(2-3): 579-603
|
[27] |
张亦知, 程诚, 范钇彤 等. 基于物理知识约束的数据驱动式湍流模型修正及槽道湍流计算验证. 航空学报, 2020, 41(3): 119-128(Zhang Yizhi, Cheng Cheng, Fan Yitong, et al. Data-driven correction of turbulence model with physics knowledge constrains in channel flow. Acta Aeronautica et Astronautica Ainica, 2020, 41(3): 119-128 (in Chinese))
|
[28] |
Hoerl AE, Kennard RW. Ridge regression: Applications to nonorthogonal problems. Technometrics, 1970, 12(1): 69-82
|
[29] |
Benjamin AT, Ericksen L, Jayawant P, et al. Combinatorial trigonometry with Chebyshev polynomials. Journal of Statistical Planning and Inference, 2010, 140(8): 2157-2160
|
[30] |
Zhang YZ, Xia SN, Dong YH, et al. An efficient parallel algorithm for DNS of buoyancy-driven turbulent flows. Journal of Hydrodynamics, Ser. B, 2019, 31(6): 1159-1169
|
[31] |
Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005, 67(2): 301-320
|
[32] |
Maddu S, Cheeseman BL, Sbalzarini IF, et al. Stability selection enables robust learning of partial differential equations from limited noisy data. arXiv preprint, 2019, arXiv:1907.07810
|
[33] |
Bo Y, Wang P, Guo Z, et al. DUGKS simulations of three-dimensional Taylor-Green vortex flow and turbulent channel flow. Computers & Fluids, 2017, 155: 9-21
|