EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地形和土-结相互作用效应对三维跨峡谷 桥梁地震响应的影响分析

陈少林 伍锐 张娇 谷音

陈少林, 伍锐, 张娇, 谷音. 地形和土-结相互作用效应对三维跨峡谷 桥梁地震响应的影响分析[J]. 力学学报, 2021, 53(6): 1781-1794. doi: 10.6052/0459-1879-21-039
引用本文: 陈少林, 伍锐, 张娇, 谷音. 地形和土-结相互作用效应对三维跨峡谷 桥梁地震响应的影响分析[J]. 力学学报, 2021, 53(6): 1781-1794. doi: 10.6052/0459-1879-21-039
Chen Shaolin, Wu Rui, Zhang Jiao, Gu Yin. TOPOGRAPHY AND SOIL-STRUCTER INTERACTION EFFECTS ON THE SEISMIC RESPONSE OF THREE-DIMENSIONAL CANYON-CROSSING BRIDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1781-1794. doi: 10.6052/0459-1879-21-039
Citation: Chen Shaolin, Wu Rui, Zhang Jiao, Gu Yin. TOPOGRAPHY AND SOIL-STRUCTER INTERACTION EFFECTS ON THE SEISMIC RESPONSE OF THREE-DIMENSIONAL CANYON-CROSSING BRIDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1781-1794. doi: 10.6052/0459-1879-21-039

地形和土-结相互作用效应对三维跨峡谷 桥梁地震响应的影响分析

doi: 10.6052/0459-1879-21-039
基金项目: 1)国家自然科学基金资助项目(51978337);国家自然科学基金资助项目(U2039209)
详细信息
    作者简介:

    2)陈少林, 教授, 主要研究方向: 地震工程. E-mail: icmcsl@nuaa.edu.cn

    通讯作者:

    陈少林

  • 中图分类号: TU435

TOPOGRAPHY AND SOIL-STRUCTER INTERACTION EFFECTS ON THE SEISMIC RESPONSE OF THREE-DIMENSIONAL CANYON-CROSSING BRIDGE

  • 摘要: 评估跨峡谷桥梁的地震性态需要考虑地形效应、行波效应以及土-结相互作用效应.将峡谷-桥梁系统在地震波输入下的反应分析看作波动散射问题,即桥梁及其邻近非规则区域对峡谷场地"自由场"的扰动. 基于此思想,本文发展了一套跨峡谷桥梁地震反应分析方法,通过二维模型分析得到峡谷场地的"自由场", 结合人工边界输入到峡谷-桥梁体系,采用土-结相互作用分区并行方法对其进行分析, 并编制了相应的分析程序.该方法可在自由场分析时考虑非垂直入射地震波, 计入行波效应,因此可综合考虑行波效应、地形效应和土-结相互作用效应. 通过峡谷场地分析算例,验证了自由场和人工边界实施的正确性; 并以马水河大桥为对象,通过5种计算模型结果的比较,分析了地形效应和土-结相互作用效应对跨峡谷桥梁地震反应的影响, 算例结果表明,地形效应对墩底剪力、弯矩和轴力有明显影响,对位移的影响要比对剪力、弯矩的影响小; 土-结相互作用对桥梁反应的影响较大,较大地减小了桥梁反应.

     

  • [1] Gazetas G, Kallou PV, Psarropoulos PN. Topography and soil effects in the M S 5.9 Parnitha (Athens) earthquake: The case of Adàmes. Natural Hazards, 2002, 27(1): 133-169
    [2] 周国良, 李小军, 侯春林 等. SV波入射下河谷地形地震动分布特征分析. 岩土力学, 2012, 33(4): 1162-1166

    (Zhou Guoliang, Li Xiaojun, Hou Chun1in, et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves. Rock and Soil Mechanics, 2012, 33(4): 1161-1166 (in Chinese))
    [3] Jia HY, Zhang DY, Zheng SX, et al. Local site effects on a high-pier railway bridge under tridirectional spatial excitations: Nonstationary stochastic analysis. Soil Dynamics and Earthquake Engineering, 2013, 52: 55-69
    [4] 王蕾, 赵成刚, 屈铁军. SV 波入射下地形条件对大跨钢构桥地震响应的影响. 地震学报, 2008, 30(3): 307-314

    (Wang Lei, Zhao Chenggang, Qu Tiejun. Seismic response of long-span rigid-framed bridge to incident SV wave with topographic effect being considered. Acta Seismologica Sinica, 2008, 30(3): 307-314 (in Chinese))
    [5] 梅泽洪, 李小军, 王玉石 等. 考虑场地效应的非一致激励下桥梁地震响应特点分析. 震灾防御技术, 2017, 12(3): 646-654

    (Mei Zehong, Li Xiaojun, Wang Yushi, et al. Analysis of seismic response characteristics of bridges under non-uniform excitation considering site effects. Technology for Earthquake Disaster Prevention, 2017, 12(3): 646-654 (in Chinese))
    [6] 张会远. 纵桥向行波作用下大跨度连续刚构桥的地震反应分析. 中外公路, 2014, 34(6): 92-96

    (Zhang Huiyuan. Seismic response analysis of long-span continuous rigid frame bridge under longitudinal traveling wave. Journal of China & Foreign Highway, 2014, 34(6): 92-96 (in Chinese))
    [7] 陈兴冲, 吴海燕, 张永亮. 行波效应对铁路大跨长联连续刚构桥地震反应的影响. 世界地震工程, 2010(1): 191-196

    (Chen Xingchong, Wu Haiyan, Zhang Yongliang. The effect of traveling waves on seismic response of railway long-span and long-cunjunction continuous rigid-frame bridges under multi-support excitations. World Earthquake Engineering, 2010(1): 191-196 (in Chinese))
    [8] 刘正楠, 陈兴冲, 张永亮 等. 考虑行波效应的无砟轨道铁路桥梁纵桥向地震响应. 振动与冲击, 2020, 39(4): 142-149

    (Liu Zhengnan, Chen Xingchong, Zhang Yongliang, et al. Longitudinal seismic response of ballastless railway bridges considering traveling wave effect. Journal of Vibration and Shock, 2020, 39(4): 142-149 (in Chinese))
    [9] Mylonakis G, Gazetas G. Seismic soil-structure interaction: Beneficial or detrimental. Journal of Earthquake Engineering, 2000, 4(3): 277-301
    [10] Wu JN. Seismic effectiveness of tuned mass dampers considering soil-structure interaction. Earthquake Engineering and Structure Dynamic, 1999, 28(11): 1219-1233
    [11] 杨美良, 李振华, 钟扬. 桩土效应对矮墩刚构连续组合梁桥的受力影响分析. 中外公路, 2012, 32(05): 112-115

    (Yang Meiliang, Li Zhenhua, Zhong Yang. Analysis of pile-soil effect on the stress of low pier rigid frame continuous composite beam bridge. Journal of China & Foreign Highway, 2012, 32(5): 112-115 (in Chinese))
    [12] Zani G, Martinelli P, Galli A, et al. Seismic assessment of a 14th-century stone arch bridge: Role of soil-structure interaction. Journal of Bridge Engineering, 2019, 24(7): 05019008.1
    [13] Vahid S, Ali G, Ali M. Analytical model for time history analysis of single pier bridges considering soil-pile structure interaction effects. Applied Mathematical Modelling, 2021(93): 257-275
    [14] Farshad H, Mahdi Y. The probabilistic seismic assessment of aged concrete arch bridges: The role of soil-structure interaction. Structures, 2020, 28: 894-904
    [15] Emad NT, Todd T, Farhad A. Effects of near-field ground motions and soil-structure interaction on dynamic response of a cable-stayed bridge. Soil Dynamics and Earthquake Engineering, 2020, 133: 106115
    [16] Fiorentino G, Cengiz C, Luca FD, et al. Integral abutment bridges: Investigation of seismic soil-structure interaction effects by shaking table testing. Earthquake Engineering Structural Dynamics, 2021, 50(6): 1517-1538
    [17] 范立础, 王君杰, 陈玮. 非一致地震激励下大跨度斜拉桥的响应特征. 计算力学学报, 2001, 18(3): 358-363

    (Fan Lichu, Wang Junjie, Chen Wei. Response characteristics of long-span cable-stayed bridges under non-uniform seismic excitation. Chinese Journal of Computational Mechanics, 2001, 18(3): 358-363 (in Chinese))
    [18] 闫晓宇, 李忠献, 韩强 等. 多点激励下大跨度连续刚构桥地震响应振动台阵试验研究. 土木工程学报, 2013, 46(7): 81-89

    (Yan Xiaoyu, Li Zhongxian, Han Qiang, et al. Shaking tables test study on seismic responses of a long-span rigid-framed bridge under multi-support excitations. China Civil Engineering Journal, 2013, 46(7): 81-89 (in Chinese))
    [19] Karmakara D, Ray-Chaudhuri S, Shinozuka M. Seismic response evaluation of retrofitted Vincent Thomas bridge under spatially variable ground motions. Soil Dynamics and Earthquake Engineering, 2012, 42: 119-127
    [20] Soyluk K. Comparison of random vibration methods for multi-support seismic excitation analysis of long-span bridges. Engineering Structures, 2004, 26(11): 1573-1583
    [21] Shiravand MR, Parvanehro P. Spatial variation of seismic ground motion effects on nonlinear responses of cable stayed bridges considering different soil types. Soil Dynamics and Earthquake Engineering, 2019, (119): 104-117
    [22] Zhong J, Jeon JS, Reny WX. Risk assessment for a long-span cable-stayed bridge subjected to multiple support excitations. Engineering Structures, 2018(176): 220-230
    [23] Li C, Li HN, Hao H, et al. Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites. Engineering Structures, 2018, (165): 441-456
    [24] Nurdan MA, Selcuk B, Ebru H. Response of the Fatih Sultan Mehmet Suspension Bridge under spatially varying multi-point earthquake excitations. Soil Dynamics and Earthquake Engineering, 2016, 84: 44-54
    [25] Anastasios GS, Kyriazis DP, Andreas JK. Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomena. Part 1: Methodology and analytical tools. Earthquake Engng Struct. Dyn, 2003, 32: 607-627
    [26] Anastasios GS, Andreas JK, Kyriazis DP. Inelastic dynamic analysis of RC bridges accounting for spatial variability of ground motion, site effects and soil-structure interaction phenomena. Part 2: Parametric study. Earthquake Engng Struct. Dyn. 2003, 32: 629-652
    [27] Xie W, Sun LM, Lou ML. Shaking table test verification of traveling wave resonance in seismic response of pile-soil-cable-stayed bridge under non-uniform sine wave excitation. Soil Dynamics and Earthquake Engineering, 2020, 134: 106151
    [28] 周国良 李小军, 李铁萍 等. SV波入射下峡谷地形对多支撑大跨桥梁地震反应影响分析. 岩土力学, 2012, 33(5): 1572-1578

    (Zhou Guoliang, Li Xiaojun, Li Tieping, et al. Canyon topography effects on seismic responses of multi-support bridge under incident SV seismic waves. Rock and Soil Mechanics, 2012, 33(5): 1572-1578 (in Chinese))
    [29] 王笃国, 赵成刚. 地震波斜入射下考虑场地非线性、地形效应和土结动力相互作用的大跨连续刚构桥地震响应分析. 工程力学, 2017, 34(4): 32-41

    (Wang Duguo, Zhao Chenggang. Seismic analysis of long-span continuous rigid frame bridge considering site nonlinearity, topographical effects and soil-structure dynamic interaction under oblique incidence. Engineering Mechanics, 2017, 34(4): 32-41) (in Chinese))
    [30] 谷音, 江梦霞, 卓卫东 等. 考虑地震波斜入射下河谷地形的大跨桥梁动力反应研究. 福州大学学报(自然科学版), 2013, 41(4): 517-522

    (Gu Yin, Jiang Mengxia, Zhuo Weidong, et al. Seismic response analysis of long - span bridges subjected to spatially non - uniform seismic ground motions. Journal of Fuzhou University (Natural Science Edition), 2013, 41(4): 517-522 (in Chinese))
    [31] 陈少林, 赵宇昕. 一种三维饱和土-基础-结构动力相互作用分析方法. 力学学报, 2016, 48(6): 1362-1371

    (Chen Shaolin, Zhao Yuxin. A method for three-dimensional saturated soil-foundation-structure dynamic interaction analysis. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1362-1371 (in Chinese))
    [32] 陈少林, 王俊泉, 刘启方 等. 基于显-隐式格式的三维时域土-结相互作用分析的异步并行算法. 中国科学(技术科学), 2017, 12: 1321-1330

    (Chen Shaolin, Wang Junquan, Liu Qifang, et al. Asynchronous parallel algorithm for three-dimensional soil-structure interaction analysis based on explicit-implicit integration scheme. Scientia Sinica (Technologica), 2017, 12: 1321-1330 (in Chinese))
    [33] 廖振鹏. 工程波动理论导引. 北京: 科学出版社, 1996

    (Liao Zhenpeng. Introduction to Engineering Wave Theory. Beijing: Science Press, 1996 (in Chinese))
    [34] 陈少林, 宗娟. 平面波任意角度入射时波动散射问题输入的一种实现方法. 固体力学学报, 2018, 39: 80-89

    (Chen Shaolin, Zong Juan. A realization method of wave scattering problem input when plane wave is incident at any angle. Chinese Journal of Solid Mechanics, 2018, 39: 80-89 (in Chinese))
    [35] 刘晶波, 王艳. 成层半空间出平面自由波场的一维化时域算法. 力学学报, 2006, 38(2): 219-225

    (Liu Jingbo, Wang Yan. A one-dimensional time-domain algorithm for generating a plane free wave field in a layered half-space. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 219-225 (in Chinese))
  • 加载中
计量
  • 文章访问数:  838
  • HTML全文浏览量:  224
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回