EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

串列布置三圆柱涡激振动频谱特性研究

涂佳黄 胡刚 谭潇玲 梁经群 张平

涂佳黄, 胡刚, 谭潇玲, 梁经群, 张平. 串列布置三圆柱涡激振动频谱特性研究[J]. 力学学报, 2021, 53(6): 1552-1568. doi: 10.6052/0459-1879-21-036
引用本文: 涂佳黄, 胡刚, 谭潇玲, 梁经群, 张平. 串列布置三圆柱涡激振动频谱特性研究[J]. 力学学报, 2021, 53(6): 1552-1568. doi: 10.6052/0459-1879-21-036
Tu Jiahuang, Hu Gang, Tan Xiaoling, Liang Jingqun, Zhang Ping. STUDY ON THE SPECTRUM CHARACTERISTICS OF VORTEX-INDUCED VIBRATION OF THREE TANDEM CIRCULAR CYLINDERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1552-1568. doi: 10.6052/0459-1879-21-036
Citation: Tu Jiahuang, Hu Gang, Tan Xiaoling, Liang Jingqun, Zhang Ping. STUDY ON THE SPECTRUM CHARACTERISTICS OF VORTEX-INDUCED VIBRATION OF THREE TANDEM CIRCULAR CYLINDERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1552-1568. doi: 10.6052/0459-1879-21-036

串列布置三圆柱涡激振动频谱特性研究

doi: 10.6052/0459-1879-21-036
基金项目: 1)国家自然科学基金(51434002);国家自然科学基金(11602214);湖南省自然科学基金(2020JJ4568);湖南省教育厅科学研究优秀青年(18B079)
详细信息
    作者简介:

    2)涂佳黄, 副教授, 主要研究方向: 流体与结构相互作用. E-mail: tujiahuang1982@163.com

    通讯作者:

    涂佳黄

  • 中图分类号: O357.1

STUDY ON THE SPECTRUM CHARACTERISTICS OF VORTEX-INDUCED VIBRATION OF THREE TANDEM CIRCULAR CYLINDERS

  • 摘要: 对串列三圆柱体双自由度涡激振动问题进行了数值计算, 并分析了雷诺数、固有频率比和约化速度对串列三圆柱体结构动力响应及频谱特性的影响. 研究发现: 雷诺数、频率比对上游圆柱的振幅和流体力系数的影响较小. 中游圆柱频率锁定区域随着雷诺数的增大而增大, 其动力响应受上游圆柱尾流的影响较大, 但频率比的影响较小. 同时, 流体力系数在约化速度较小时受雷诺数和频率比的影响较大. 另外, 下游圆柱的振幅和流体力系数受雷诺数及频率比的影响较大. 雷诺数、频率比和约化速度对圆柱流体力系数能量谱密度(PSD)曲线中主峰幅值、频谱成分及波动性的影响较大. 流体力系数PSD曲线波动性的增强, 导致圆柱运动轨迹会从"8"字形转变成不规则形状. 当频率比为2.0时, 上游圆柱尾流出现P$+$S模式, 导致其发生非对称运动, 且升、阻力系数PSD曲线主峰重合. 最后, 激励荷载平均功率值随约化速度的变化趋势与对应的结构动力响应的变化类似. 在同一约化速度区间内, 结构振动响应的强弱与位移的平均功率值成正比. 对不同约化速度区间内的升力系数功率谱密度分析时, 振动频率比($f_{s}/f_{n, y})$对结构振动响应的影响更大.

     

  • [1] Duan J, Li J, Chen K, et al. Numerical investigation of vortex-induced vibration of a riser with internal flow. Applied Ocean Research, 2018, 72: 110-121
    [2] 芮雪, 陈东阳, 王国平. 海洋热塑性增强管(RTP)涡激振动数值计算. 力学学报, 2020, 52(1): 235-246

    (Rui Xue, Chen Dongyang, Wang Guoping. Numerical calculation of vortex-induced vibration of reinforced themoplastic pipe. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 235-246 (in Chinese))
    [3] 李明水, 孙延国, 廖海黎 等. 港珠澳大桥大挑臂钢箱梁涡激振动特性及抑振措施. 清华大学学报(自然科学版), 2020, 60(1): 57-65

    (Li Mingshui, Sun Yanguo, Liao Haili, et al. Vortex-induced vibration of steel box girder with large projecting slab and its mitigation countermeasures for Hong Kong-Zhuhai-Macao Bridge. Journal of Tsinghua University (Science and Technology), 2020, 60(1): 57-65 (in Chinese))
    [4] Hwang Y, Kim S, Kim H. Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge. Structure and Infrastructure Engineering, 2020, 16(1): 84-93
    [5] Wang L, Liang S, Zou L, et al. Investigation on VIV system vibration frequency of super high-rise building. Journal of Zhejiang University, 2014, 48(5): 805-812
    [6] Wang L, Zhang Z, Liang S, et al. Some phenomena of vortex-induced vibration in super high-rise building. Acta Aerodynamica Sinica, 2017, 35(5): 665-670
    [7] Bearman PW. Vortex shedding from oscillating bluff bodies. Annual Review of Fluids Mechanics, 2012, 16(1): 195-222
    [8] Bernitsas M, Raghavan K, Ben S, et al. VIVACE (vortex induced vibration aquatic clean energy): A new concept in gereration of clean and renewable energy from fluid flow. Journal of Offshore Mechanics and Arctic Engineering ASMS Transactions, 2008, 130(4): 041101
    [9] Haonan K, Vesselina R, Vesselin S. Renewable energy harvesting from water flow. International Journal of Environmental Studies, 2019, 76(1): 84-101
    [10] Griffin OM, Ramberg SE. Some recent studies of vortex shedding with application to marine tubulars and risers. Journal of Energy Resources Technology, 1982, 104: 2-13
    [11] Bearman PW. Circular cylinder wakes and vortex-induced vibrations. Journal of Fluids and Structures, 2011, 27: 648-658
    [12] Williamson CHK, Govardhan R. A brief review of recent results in vortex-induced vibrations. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 713-735
    [13] Williamson CHK, Govardhan R. Vortex-induced vibration. Annual Review of Fluid Mechanics, 2004, 36: 413-455
    [14] Papaioannou G, Yue D, Triantafyllou M, et al. On the effect of spacing on the vortex-induced vibrations of two tandem cylinders. Journal of Fluids and Structures, 2008, 24(6): 833-854
    [15] Prasanth T, Mittal S. Flow-induced oscillation of two circular cylinders in tandem arrangement at low $Re$. Journal of Fluids and Structures, 2009, 25(6): 1029-1048
    [16] 及春宁, 陈威霖, 黄继露 等. 串列双圆柱流致振动的数值模拟及其耦合机制. 力学学报, 2014, 46(6): 862-870

    (Ji Chunning, Chen Weilin, Huang Jilu, et al. Numerical investigation on flow-induced vibration of two cylinders in tandem arrangements and its coupling mechanisms. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 862-870 (in Chinese))
    [17] Mysa R, Kaboudian A, Jaiman R. On the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds number. Journal of Fluids and Structures, 2016, 61: 76-98
    [18] Mittal S, Kumar V. Flow-induced oscillations of two cylinders in tandem and staggered arrangement. Fluids Structures, 2001, 15: 717-736
    [19] Igarashi T, Suzuki K. Characteristics of the flow around three circular cylinders arranged in line. Journals of the Japan Society of Mechanical Engineers, 1984, 27(233): 2397-2404
    [20] Yu K, étienne S, Scolan Y, et al. Flow-induced vibrations of in-line cylinder arrangements at low Reynolds numbers. Journal of Fluids and Structures, 2016, 60: 37-61
    [21] Chen W, Ji C, Williams J. Vortex-induced vibrations of three tandem cylinders in laminar cross-flow: Vibration response and galloping mechanism. Journal of Fluids Structures, 2018, 78: 215-238
    [22] Mahmoud S, Atef M. Flow-induced vibration of three unevenly spaced in-line cylinder in cross-flow. Journal of Fluids and Structures, 2018, 76: 367-383
    [23] 张志猛, 及春宁, 许栋 等. 上游圆柱固定条件下串列三圆柱涡激振动响应和尾流特性. 水动力学研究与进展(A辑), 2019, 34(2): 174-183

    (Zhang Zhimeng, Ji Chunning, Xu Dong, et al. Response and wake characteristics of vortex-induced vibrations of three tandem circular cylinders with the upstream cylinders fixed. Chinese Journal of Hydrodynamics, 2019, 34(2): 174-183 (in Chinese))
    [24] Behara S, Chandra V, Ravikanth B, et al. Flow-induced oscillations of three tandem circular cylinders in a two-dimensional flow. Journal of Fluids and Structures, 2019, 91: 102711
    [25] 涂佳黄, 谭潇玲, 邓旭辉 等. 平面剪切来流作用下串列布置三圆柱流致运动特性研究. 力学学报, 2019, 51(3): 787-802

    (Tu Jiahuang, Tan Xiaoling, Deng Xuhui, et al. Study of flow-induced motion characteristics of three tandem circular cylinders in planar shear flow. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 787-802 (in Chinese))
    [26] Masud A, Bhanabhagvanwala M, Khurram R. An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction. Computers and Fluids, 2007, 36(1): 77-91
    [27] 涂佳黄. 剪切来流下钝体结构绕流与涡激振动效应模拟和分析. [博士论文]. 上海: 上海交通大学, 2014

    (Tu Jiahuang. Numerical study on flow over buff bodies and vortex-induced vibrations in planar shear flow. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese))
    [28] 涂佳黄, 谭潇玲, 杨枝龙 等. 上游静止方柱尾流对下游方柱体尾激振动效应影响. 力学学报, 2019, 51(5): 1321-1335

    (Tu Jiahuang, Tan Xiaoling, Yang Zhilong, et al. Effect of wake induced-vibration responses of a square cylinder behind the stationary square cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1321-1335 (in Chinese))
    [29] Bao Y, Huang C, Zhou D, et al. Two-degree-of-freedom flow-induced vibrations on isolated and tandeem cylinders with varying natural frequency ratios. Journal of Fluids and Structures, 2012, 35: 50-75
    [30] Borazjani I, Sotiropoulos F. Vortex-induced vibrations of cylinders in tandem arrangement in the proximity-wake interference region. Journal of Fluid Mechanics, 2009, 621: 321-364
    [31] Prasanth T, Mittal S. Vortex-induced vibrations of a circular cylinder at low Reynolds numbers. Journal of Fluid of Mechanics, 2008, 594: 463-491
    [32] 张庆华, 马文勇, 王强 等. 大跨度三心柱面网壳风压分布试验研究. 振动. 测试与诊断, 2019, 39(4): 733-738

    (Zhang Qinghua, Ma Wenyong, Wang Qiang, et al. Experimental wind pressure distribution on large-span three-centered cylindrical reticulated shell. Journal of Vibration, Measurement & Diagnosis, 2019, 39(4): 733-738 (in Chinese))
  • 加载中
计量
  • 文章访问数:  836
  • HTML全文浏览量:  127
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回