[1] |
李晓芳, 杨晓翔. 橡胶材料的超弹性本构模型. 弹性体, 2005,15(1):50-58(Li Xiaofang, Yang Xiaoxiang. A review of elastic constitutive model for rubber materials. China Elastomerics, 2005,15(1):50-58 (in Chinese))
|
[2] |
Mihai LA, Budday S, Holzapfel GA, et al. A family of hyperelastic models for human brain tissue. Journal of the Mechanics and Physics of Solids, 2017,106:60-79
|
[3] |
Holzapfel AG. Nonlinear Solid Mechanics. New York: Johns Wiley & Sons, 2000
|
[4] |
Huang ZP. A novel constitutive formulation for rubberlike materials in thermoelasticity. Journal of Applied Mechanics, 2014,81(4):041013
|
[5] |
张希润, 蔡力勋, 陈辉. 基于能量密度等效的超弹性压入模型与双压试验方法. 力学学报, 2020,52(3):787-796(Zhang Xirun, Cai Lixun, Chen Hui. Hyperelastic indentation models and the dual-indentation method based on energy density equivalence. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):787-796 (in Chinese))
|
[6] |
Sasso M, Palmieri G, Chiappini G, et al. Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods. Polymer Testing, 2008,27(8):995-1004
|
[7] |
杨海波, 刘枫, 李凡珠 等. 圆柱形橡胶试样压缩变形有限元分析的超弹性本构方程对比研究. 橡胶工业, 2018,10:1085-1093(Yang Haibo, Liu Feng, Li Fanzhu, et al. Finite element analysis of compressive deformation for cylindrical rubber components based on hyperelastic constitutive models. China Rubber Industry, 2018,10:1085-1093 (in Chinese))
|
[8] |
李雪冰, 危银涛. 一种改进的 Yeoh 超弹性材料本构模型. 工程力学, 2016,33(12):38-43(Li Xuebing, Wei Yingtao. An improved Yeoh constitutive model for hyperelastic material. Engineering Mechanics, 2016,33(12):38-43 (in Chinese))
|
[9] |
刘滢滢, 邢誉峰. 超弹性橡胶材料的改进 Rivlin 模型. 固体力学学报, 2012,33(4):408-414(Liu Yingying, Xing Yufeng. An improved Rivlin model of hyperelastic rubber materials. Chinese Journal of Solid Mechanics, 2012,33(4):408-414 (in Chinese))
|
[10] |
Lopez-Pamies O. A new I1-based hyperelastic model for rubber elastic materials. Comptes Rendus Mecanique, 2010,338(1):3-11
|
[11] |
Mangan R, Destrade M, Saccomandi G. Strain energy function for isotropic non-linear elastic incompressible solids with linear finite strain response in shear and torsion. Extreme Mechanics Letters, 2016,9:204-206
|
[12] |
罗文波, 谭江华. 橡胶弹性材料的一种混合本构模型. 固体力学学报, 2008,29(3):277-281(Luo Wenbo, Tan Jianghua. A hybird hyperelastic constitutive model of rubber materials. Chinese Journal of Solid Mechanics, 2008,29(3):277-281 (in Chinese))
|
[13] |
魏志刚, 陈海波. 一种新的橡胶材料弹性本构模型. 力学学报, 2019,51(2):473-483(Wei Zhigang, Chen Haibo. A new elastic model for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):473-483 (in Chinese))
|
[14] |
Treloar LRG. The elasticity of a network of long-chain molecules-II. Transactions of the Faraday Society, 1943,39:241-246
|
[15] |
Wang MC, Guth E. Statistical theory of networks of non-Gaussian flexible chains. The Journal of Chemical Physics, 1952,20(7):1144-1157
|
[16] |
Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 1993,41(2):389-412
|
[17] |
Wu PD, Van Der Giessen E. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of the Mechanics and Physics of Solids, 1993,41(3):427-456
|
[18] |
Tian C, Xiao R, Guo J. An experimental study on strain hardening of amorphous thermosets: effect of temperature, strain rate, and network density. Journal of Applied Mechanics, 2018,85(10):101012
|
[19] |
Boyce MC, Arruda EM. Constitutive models of rubber elasticity: a review. Rubber Chemistry and Technology, 2000,73(3):504-523
|
[20] |
Diani J, Le Tallec P. A fully equilibrated microsphere model with damage for rubberlike materials. Journal of the Mechanics and Physics of Solids, 2019,124:702-713
|
[21] |
Hossain M, Amin AF, Kabir MN. Eight-chain and full-network models and their modified versions for rubber hyperelasticity: A comparative study. Journal of the Mechanical Behavior of Materials, 2015,24(1-2):11-24
|
[22] |
Treloar LR. Stress-strain data for vulcanized rubber under various types of deformation. Rubber Chemistry and Technology, 1944,17(4):813-825
|
[23] |
Steinmann P, Hossain M, Possart G. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar's data. Archive of Applied Mechanics, 2012,82(9):1183-1217
|
[24] |
Klüppel M, Schramm J. A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromolecular Theory and Simulations, 2000,9(9):742-754
|
[25] |
Miehe C, G?ktepe S, Lulei F. A micro-macro approach to rubber-like materials——part I: The non-affine micro-sphere model of rubber elasticity. Journal of the Mechanics and Physics of Solids, 2004,52(11):2617-2660
|
[26] |
Khiêm VN, Itskov M. Analytical network-averaging of the tube model: Rubber elasticity. Journal of the Mechanics and Physics of Solids, 2016,95:254-269
|
[27] |
Davidson JD, Goulbourne NC. A nonaffine network model for elastomers undergoing finite deformations. Journal of the Mechanics and Physics of Solids, 2013,61(8):1784-1797
|
[28] |
Xiang Y, Zhong D, Wang P, et al. A general constitutive model of soft elastomers. Journal of the Mechanics and Physics of Solids, 2018,117:110-122
|
[29] |
Doi M, Edwards S. The Theory of Polymer Dynamics. Oxford: Oxford University Press, 1986
|
[30] |
Kuhn W, Grün F. Beziehungen zwischen elastischen Konstanten und Dehnungsdoppelbrechung hochelastischer Stoffe. Kolloid-ZeitschrifT, 1942,101(3):248-271
|
[31] |
Kearsley EA. Note: Strain invariants expressed as average stretches. Journal of Rheology, 1989,33(5):757-760
|
[32] |
Zhao F. Continuum constitutive modeling for isotropic hyperelastic materials. Advances in Pure Mathematics, 2016,6(9):571-582
|
[33] |
Thiel C, Voss J, Martin RJ, et al. Shear, pure and simple. International Journal of Non-Linear Mechanics, 2019,112:57-72
|
[34] |
Treloar LR. The Physics of Rubber Elasticity. Oxford: Oxford University Press, 1975
|
[35] |
Jones DF, Treloar LR. The properties of rubber in pure homogeneous strain. Journal of Physics D$:$ Applied Physics, 1975,8(11):1285-1304
|
[36] |
Hong W, Liu Z, Suo Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. International Journal of Solids and Structures, 2009,46(17):3282-328
|