EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由场空泡溃灭过程能量转化机制研究

韩磊 张敏弟 黄国豪 黄彪

韩磊, 张敏弟, 黄国豪, 黄彪. 自由场空泡溃灭过程能量转化机制研究[J]. 力学学报, 2021, 53(5): 1288-1301. doi: 10.6052/0459-1879-21-006
引用本文: 韩磊, 张敏弟, 黄国豪, 黄彪. 自由场空泡溃灭过程能量转化机制研究[J]. 力学学报, 2021, 53(5): 1288-1301. doi: 10.6052/0459-1879-21-006
Han Lei, Zhang Mindi, Huang Guohao, Huang Biao. ENERGY TRANSFORMATION MECHANISM OF A GAS BUBBLE COLLAPSE IN THE FREE-FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1288-1301. doi: 10.6052/0459-1879-21-006
Citation: Han Lei, Zhang Mindi, Huang Guohao, Huang Biao. ENERGY TRANSFORMATION MECHANISM OF A GAS BUBBLE COLLAPSE IN THE FREE-FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1288-1301. doi: 10.6052/0459-1879-21-006

自由场空泡溃灭过程能量转化机制研究

doi: 10.6052/0459-1879-21-006
基金项目: 1)国家自然科学基金(51979003);国家自然科学基金(52079004);北京市自然科学基金(3212023)
详细信息
    作者简介:

    2)张敏弟, 副教授, 主要研究方向: 空化流体动力学. E-mail:zhangmindi@bit.edu.cn;

    通讯作者:

    张敏弟

    黄彪

  • 中图分类号: O352

ENERGY TRANSFORMATION MECHANISM OF A GAS BUBBLE COLLAPSE IN THE FREE-FIELD

  • 摘要: 综合应用实验与数值模拟方法, 深入讨论了自由场空泡溃灭过程中的能量转化机制. 在实验研究中, 应用纹影法记录了空泡溃灭的演变过程, 提取了空泡在溃灭过程中的半径, 溃灭速度等数据, 结合空泡势能和动能方程, 描述了空泡能量的转化过程. 在开展数值模拟分析时, 运用弱可压缩流体质量守恒方程和动量方程, 建立了三维数值模型用以模拟空泡在自由场中的溃灭过程, 并且由结果中获取了空泡溃灭过程中的压力及速度变化规律, 揭示了空泡在溃灭过程中能量转化机制. 研究结果表明: (1) 自由场空泡在溃灭过程中, 空泡势能与空泡半径具有相同的演化趋势, 空泡动能与势能变化趋势相反; 当空泡达到最大半径处时, 空泡势能最大, 流场动能为零. (2) 溃灭后期在空泡周围会形成高压区域, 该区域的压力梯度与速度梯度较高, 随着空泡收缩, 高压区域面积逐渐减小. (3) 空泡在自由场中发生溃灭时, 空泡势能不断转化为流场动能, 在溃灭时刻可以明显观察到冲击波现象, 空泡的大部分能量会在此时转化为冲击波的波能.

     

  • [1] Huang B, Young YL, Wang GY, et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. Journal of Fluids Engineering, 2013,135(7):071301
    [2] Callenaere M, Franc JP, Michel JM, et al. The cavitation instability induced by the development of a re-entrant jet. Journal of Fluid Mechanics, 2001,444:223-256
    [3] Ma XJ, Huang B, Zhao X, et al. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries. Ultrasonics Sonochemistry, 2018,43:80-90
    [4] Tiwari A, Pantano C, Freund JB. Growth-and-collapse dynamics of small bubble clusters near a wall. Journal of Fluid Mechanics, 2015,775:1-23
    [5] Rayleigh L, On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag, 1917,34(200):94-98
    [6] Koukouvinis P, Gavaises M, Supponen O, et al. Simulation of bubble expansion and collapse in the vicinity of a free surface. Physics of Fluids, 2016,28(5):052103
    [7] Beig SA, Aboulhasanzadeh B, Johnsen E, Temperatures produced by inertially collapsing bubbles near rigid surfaces. Journal of Fluid Mechanics, 2018,852:105-125
    [8] Cao S, Wang G, Coutier-Delgosha O, et al. Shock-induced bubble collapse near solid materials: Effect of acoustic impedance. Journal of Fluid Mechanics, 2020,907
    [9] Tian ZL, Liu YL, Zhang AM, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method. Ocean Engineering, 2020, 196(Jan.15): 106714.1-106714.12
    [10] Fu L, Wang S, Xin J, et al. Experimental investigation on multiple breakdown in water induced by focused nanosecond laser. Optics Express, 2018,26(22):28560
    [11] Plesset MS. On the stability of fluid flows with spherical symmetry. Journal of Applied Physics, 1954,25(1):96-98
    [12] Ma XJ, Huang B, Wang GY, et al. Experimental investigation of conical bubble structure and acoustic flow structure in ultrasonic field. Ultrasonics Sonochemistry, 2017,34:164-172
    [13] Zhang AM, Wu WB, Liu YL, et al. Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model. Physics of Fluids, 2017,29(8):082111
    [14] Huang GH, Zhang MD, Ma XJ, et al. Dynamic behavior of a single bubble between the free surface and rigid wall. Ultrasonics Sonochemistry, 2020,67:105147
    [15] Orthaber U, Zevnik J, Petkovek R, et al. Cavitation bubble collapse in a vicinity of a liquid-liquid interface — Basic research into emulsification process. Ultrasonics Sonochemistry, 2020,68:105224
    [16] Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. Journal of Fluid Mechanics, 1989,206:299-338
    [17] Johnsen E, Colonius T. Numerical simulations of non-spherical bubble collapse. Journal of Fluid Mechanics, 2009,629(629):231-262
    [18] Li FZ, Fan HY, Guo YQ, et al. Water-Jet cavitation shock bulging as novel microforming technique. Chinese Journal of Mechanical Engineering, 2021,34(1):4
    [19] Ohl CD, Kurz T, Geisler R, et al. Bubble dynamics, shock waves and sonoluminescence. Philosophical Transactions of the Royal Society A, 1999,357(1751):269-294
    [20] Supponen O, Obreschkow D, Kobel P, et al. Shock waves from non-spherical cavitation bubbles//Meeting of the Aps Division of Fluid Dynamics. American Physical Society, 2017
    [21] Franc JP, Riondet M, Karimi A, et al. Impact load measurements in an erosive cavitating flow. Journal of Fluids Engineering, 2011,133(12):121301
    [22] Klaseboer E, Fong SW, Turangan CK, et al. Interaction of lithotripter shockwaves with single inertial cavitation bubbles. Journal of Fluid Mechanics, 2007,593(593):33-56
    [23] Fortes-Patella R, Challier G, Reboud JL, et al. Energy balance in cavitation erosion: From bubble collapse to indentation of material surface. Journal of Fluids Engineering, 2013,135(1):011303
    [24] Cui P, Zhang AM, Wang S, et al. Ice breaking by a collapsing bubble. Journal of Fluid Mechanics, 2018,841:287-309
    [25] Long J, Eliceiri MH, Wang L, et al. Capturing the final stage of the collapse of cavitation bubbles generated during nanosecond laser ablation of submerged targets. Optics & Laser Technology, 2021,134:106647
    [26] Sagar HJ, Moctar OE. Dynamics of a cavitation bubble near a solid surface and the induced damage. Journal of Fluids and Structures, 2020,92:102799
    [27] Liu Z, Guan X, Zhang L, et al. Investigations of dynamics of a single spark-induced bubble in saline water. Journal of Physics D$:$ Applied Physics, 2020,54(7):075203
    [28] Plesset MS. The dynamics of cavitation bubbles. Journal of Applied Mechanics, 1949,16:277-282
    [29] Khoroshev GA. Collapse of vapor-air cavitation bubbles (Collapse of single spherical vapor-air cavitation bubble, computing bubble movement and pressure as function of air content). Soviet Physics-Acoustics, 1964,9:275-279
    [30] Neppiras EA, Noltingk BE. Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation. Proceedings of the Physical Society. Section B, 1951,64(12):1032
    [31] Apfel RE. Acoustic cavitation. Methods in experimental physics. Academic Press, 1981,19:355-411
    [32] Gaudron R, Warnez MT, et al. Bubble dynamics in a viscoelastic medium with nonlinear elasticity. Journal of Fluid Mechanics, 2015,766:54-75
    [33] Fujikawa S, Akamatsu T. Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. Journal of Fluid Mechanics, 1980,97(3):481-512
    [34] Beig SA, Aboulhasanzadeh B, Johnsen E. Temperatures produced by inertially collapsing bubbles near rigid surfaces. Journal of Fluid Mechanics, 2018,852:105-125
    [35] Pineda S, Marongiu JC, Aubert S, et al. Simulation of a gas bubble compression in water near a wall using the SPH-ALE method. Computers & Fluids, 2018,179:459-475
    [36] Morenko IV. Numerical simulation of the propagation of pressure waves in water during the collapse of a spherical air cavity. Ocean Engineering, 2020,215:107905
    [37] Tian ZL, Liu YL, Zhang AM, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method. Ocean Engineering, 2020,196:106714
    [38] Fortes Patella R, Reboud JL. A new approach to evaluate the cavitation erosion power. Journal of Fluids Engineering, 1998,120(2):335-344
    [39] Schenke S, Melissaris T, Terwisga T. On the relevance of kinematics for cavitation implosion loads. Physics of Fluids, 2019,31(5):052102
    [40] Zhang J, Zhang L, Deng J. Numerical study of the collapse of multiple bubbles and the energy conversion during bubble collapse. Water, 2019,11(2):w11020247
    [41] 季斌, 程怀玉, 黄彪  等. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019,49:201906

    (Ji Bin, Cheng Huaiyu, Huang Biao , et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019,49:201906 (in Chinese))
    [42] 姚熊亮, 刘文韬, 张阿漫  等. 水下爆炸气泡及其对结构毁伤研究综述. 中国舰船研究, 2016,11(1):36-45

    (Yao Xiongliang, Liu Wentao, Zhang Aman , et al. Review of the research on underwater explosion bubbles and the corresponding structural damage. Chinese Journal of Ship Research, 2016,11(1):36-45 (in Chinese))
    [43] 张凌新, 张靖, 邵雪明 . 空泡溃灭过程中的压力波能分析. 空气动力学学报, 2020,38(4):807-813

    (Zhang Lingxin, Zhang Jing, Shao Xueming . The analysis of pressure wave energy during the collapse of cavitation bubble. Acta Aerodynamica Sinica, 2020,38(4):807-813 (in Chinese))
    [44] Kataoka I. Local instant formulation of two-phase flow. International Journal of Multiphase Flow, 1986,12(5):745-758
    [45] Caltagirone JP, Vincent S, Caruyer C. A multiphase compressible model for the simulation of multiphase flows. Computers & Fluids, 2011,50(1):24-34
    [46] Zhang MD, Chang Q, Ma XJ, et al. Physical investigation of the counterjet dynamics during the bubble rebound. Ultrasonics Sonochemistry, 2019,58:104706
    [47] Johnsen E. Numerical simulations of non-spherical bubble collapse: With applications to shockwave lithotripsy. California Institute of Technology, 2008
    [48] Qiu SC, Ma XJ, Huang B, et al. Numerical simulation of single bubble dynamics under acoustic standing waves. Ultrasonics Sonochemistry, 2018: S1350417718308058
    [49] Orimi HE, Narayanswamy S, Boutopoulos C. Hybrid analytical/numerical modeling of nanosecond laser-induced micro-jets generated by liquid confining devices. Journal of Fluids and Structures, 2020,98:103079
    [50] Choi J, Ceccio SL. Dynamics and noise emission of vortex cavitation bubbles. Journal of Fluid Mechanics, 2007,575(575):1-26
    [51] Melissaris T, Schenke S, Bulten N, et al. On the accuracy of predicting cavitation impact loads on marine propellers. Wear, 2020,456:203393
    [52] Mauger C, Méès L, Michard M, et al, Schlieren and interferometry in a 2D cavitating channel flow. Exp. Fluids, 2012,53:1895-1913
    [53] Panda J, Seasholtz RG. Experimental investigation of density fluctuations in high-speed jets and correlation with generated noise. Journal of Fluid Mechanics, 2002,450:97-130
    [54] Huang G, Zhang MD, Han L, et al. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble. Ultrasonics Sonochemistry, 2020: 105440
    [55] 张佳悦, 李达钦, 吴钦  等. 航行体回收垂直入水空泡流场及水动力特性研究. 力学学报, 2019,51(3):803-812

    (Zhang Jiayue, Li Daqin, Wu Qin , et al. Numerical investigation on cavity structures and hyrodynamics of the vehicle during vertical water-entry. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):803-812 (in Chinese))
    [56] 郭文璐, 李泓辰, 王静竹  等. 单空泡与自由液面相互作用规律研究进展. 力学学报, 2019,51(6):1682-1698

    (Guo Wenlu, Li Hongchen, Wang Jingzhu , et al. Reaserch progress on interaction between a single cavitation and free surface. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1682-1698 (in Chinese))
    [57] 王悦柔, 王军锋, 刘海龙 . 电场作用下气泡上升行为特性的数值计算研究. 力学学报, 2020,52(1):31-39

    (Wang Yuerou, Wang Junfeng, Liu Hailong . Numerical simulation on bubble rinsing behaviors under electric field. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):31-39 (in Chinese))
  • 加载中
计量
  • 文章访问数:  622
  • HTML全文浏览量:  87
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-05
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回