EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究

刘巨保 王明 王雪飞 姚利明 杨明 岳欠杯

刘巨保, 王明, 王雪飞, 姚利明, 杨明, 岳欠杯. 颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究[J]. 力学学报, 2021, 53(6): 1569-1585. doi: 10.6052/0459-1879-21-002
引用本文: 刘巨保, 王明, 王雪飞, 姚利明, 杨明, 岳欠杯. 颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究[J]. 力学学报, 2021, 53(6): 1569-1585. doi: 10.6052/0459-1879-21-002
Liu Jubao, Wang Ming, Wang Xuefei, Yao Liming, Yang Ming, Yue Qianbei. RESEARCH ON PARTICLE SWARM COLLISION SEARCH AND ADVANCEMENT ALGORITHM FOR CFD-DEM COUPLING DOMAIN SOLVING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1569-1585. doi: 10.6052/0459-1879-21-002
Citation: Liu Jubao, Wang Ming, Wang Xuefei, Yao Liming, Yang Ming, Yue Qianbei. RESEARCH ON PARTICLE SWARM COLLISION SEARCH AND ADVANCEMENT ALGORITHM FOR CFD-DEM COUPLING DOMAIN SOLVING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1569-1585. doi: 10.6052/0459-1879-21-002

颗粒群碰撞搜索及CFD-DEM耦合分域 求解的推进算法研究

doi: 10.6052/0459-1879-21-002
基金项目: 1)国家自然科学基金资助项目(11972114);国家自然科学基金资助项目(51904075)
详细信息
    作者简介:

    3)杨明, 讲师, 主要研究方向: 浸入边界法研究. E-mail: yangm@nepu.edu.cn
    2)王明, 博士研究生, 主要研究方向: 多相流及流固耦合振动研究. E-mail: wangm1031@163.com;

    通讯作者:

    王明

    杨明

  • 中图分类号: O359

RESEARCH ON PARTICLE SWARM COLLISION SEARCH AND ADVANCEMENT ALGORITHM FOR CFD-DEM COUPLING DOMAIN SOLVING

  • 摘要: 在采用计算流体力学-离散元耦合方法(computational fluiddynamics-discrete element method, CFD-DEM)进行固液两相耦合分析时, 颗粒计算时间步的选取直接影响到耦合计算精度和计算效率. 为此, 本文选取每个目标颗粒为研究对象, 引入插值函数计算时间步的运动位移, 构建可变空间搜索网格; 通过筛选可能碰撞颗粒建立搜索列表, 采用逆向搜索方式判断碰撞颗粒, 从而提出一种改进的DEM方法(modified discreteelement method, MDEM). 该算法在颗粒群与流体耦合计算中, 颗粒计算初始时间步选取不受颗粒碰撞时间限制, 通过自动调整和修正实现大步长, 由颗粒和流体耦合条件实时更新流体计算时间步, 使颗粒计算时间步选取过小导致计算效率低、选取过大导致颗粒碰撞漏判的问题得以解决, 为颗粒与流体耦合的数值模拟提供了行之有效的计算方法. 通过两个颗粒和多个颗粒的数值模拟, 得到的颗粒间碰撞力、碰撞位置及次数, 与理论计算结果的相对误差均低于2%, 与传统的DEM碰撞搜索算法相比, 在选取的3种计算时间步均不会影响计算精度, 且有较高的计算效率. 通过多个颗粒与流体的耦合数值模拟, 采用传统的CFD-DEM方法, 只有颗粒计算时间步选取10$^{-6}$ s或更小才能得到精确解, 而采用本文方法取10$^{-4}$ s也能够得到精确解, 避免了颗粒碰撞随时间步增大而出现的漏判问题, 且计算耗时降低了16.7%.

     

  • 1 Saini N, Kleinstreuer C. A new collision model for ellipsoidal particles in shear flow. Journal of Computational Physics, 2019, 376: 1028-1050
    2 刘诚, 沈永明. 定床弯道内水沙两相运动的数值模拟. 力学学报, 2009, 41(3): 318-328
    2 (Liu Cheng, Shen Yongming. Numerical simulation of two-phase movement of water and sand in a fixed bed curve. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 318-328 (in Chinese))
    3 Ge L, Evans GM, Moreno-Atanasio R. CFD-DEM investigation of the interaction between a particle swarm and a stationary bubble: Particle-bubble collision efficiency. Powder Technology, 2020, 366: 641-652
    4 Tanaka T, Tsuji M. Numerical simulation of gas-solid two-phase flow in a vertical pipe: On the effect of inter-particle collision. ASME/FED Gas-Solid Flows, 1991, 121: 123-128
    5 Acmae El Y, Xu S, Wang J. A New method for computing particle collisions in Navier-Stokes flows. Journal of Computational Physics, 2019, 99: 108919
    6 刘向军, 石磊, 徐旭常. 稠密气固两相流欧拉-拉格朗日法的研究现状. 计算力学学报, 2007, 24(2): 166-172
    6 (Liu Xiangjun, Shi Lei, Xu Xuchang. Research status of the Euler-Lagrangian method for dense gas-solid two-phase flow. Chinese Journal Computational Mechanics, 2007, 24(2): 166-172 (in Chinese))
    7 Chen X, Wang J. A comparison of two-fluid model, dense discrete particle model and CFD-DEM method for modeling impinging gas-solid flows. Powder Technology, 2014, 254: 94-102
    8 GidaGidaspow D. Multiphase Flows and Fluidization. San Diego: Academic Press Inc, 1994
    9 傅旭东, 王光谦. 低浓度固液两相流的颗粒相动理学模型. 力学学报(英文版), 2003, 35(6): 650-659
    9 (Fu Xudong, Wang Guangqian. The particle phase kinetic model of low-concentration solid-liquid two-phase flow. Acta Mechanic Sinica, 2003, 35(6): 650-659 (in Chinese))
    10 刘安源, 刘石. 流化床内颗粒碰撞传热的理论研究. 中国电机工程学报, 2003, 23(3): 161-165
    10 (Liu Anyuan, Liu Shi. Theoretical study on collision and heat transfer of particles in a fluidized bed. Proceedings of the CSEE, 2003, 23(3): 161-165 (in Chinese))
    11 刘向军, 徐旭常. 循环流化床内稠密气固两相流动的数值模拟. 中国电机工程学报, 2003, 23(5): 162-166
    11 (Liu Xiangjun, Xu Xuchang. Numerical simulation of dense gas-solid two-phase flow in circulating fluidized bed. Proceedings of the CSEE, 2003, 23(5): 162-166 (in Chinese))
    12 孙平, 樊建人, 夏振海 等. 计及颗粒间碰撞的湍流气固两相流模型及验证. 自然科学进展, 1998, 5(8): 572-580
    12 (Sun Ping, Fang Jianren, Xia Zhenhai, et al. Model and verification of turbulent gas-solid two-phase flow considering collisions between particles. Progress in Natural Science, 1998, 5(8): 572-580 (in Chinese))
    13 Hockney RW, Eastwood JW. Computer simulation using particles. Institute of Physics, 1988, 76: 249-256
    14 Baraff D. Interactive simulation of solid rigid bodies. IEEE Computer Graphics & Applications, 1995, 15(3): 63-75
    15 Schaefer BC, Quigley SF, Chan AHC. Acceleration of the discrete element method (DEM) on a reconfigurable co-processor. Computers & Structures, 2004, 82(21): 1707-1718
    16 Allen M, Tildesley D. Computer Simulation of Liquids. Oxford: Clarendon Press, 1987
    17 Vemuri BC, Chen L, Waltin O, et al. Efficient and accurate collision detection for granular flow simulation. Graphical Models & Image Processing, 1998, 60(6): 403-422
    18 Li CF, Feng YT, Owen DRJ. SMB: Collision detection based on temporal coherence. Computer Methods in Applied Mechanics & Engineering, 2006, 195(22): 2252-2269
    19 Sigurgeirsson H, Stuart A, Wan W. Algorithms for particle-field simulations with collisions. Journal of Computational Physics, 2001, 172: 766-807
    20 Yao LM, Xiao ZM, Liu JB, et al. An optimized CFD-DEM method for fluid-particle coupling dynamics analysis. International Journal of Mechanical ences, 2020, 174: 105503
    21 Banaei M, Jegers J, van Sint Annaland J. Tracking of particles using TFM in gas-solid fluidized beds. Advanced Powder Technology, 2018, 29(10): 2538-2547
    22 Sharma K, Mallick SS, Mittal A. A study of energy loss due to particle to particle and wall collisions during fluidized dense-phase pneumatic transport. Powder Technology, 2019, 362: 707-716
    23 Ariane B, Gregory S. Experimental methods in chemical engineering: Unresolved CFD-DEM. Canadian Journal of Chemical Engineering, 2020, 98(2): 424-440
    24 Auton TR, Hunt JCR, Prud'Homme M. The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluids Mech, 1988, 197: 241-257
    25 Eskin D, Ratulowski J, Akbarzadeh K. Modeling of particle deposition in a vertical turbulent pipe flow at a reduced probability of particle sticking to the wall. Chemical Engineeringence, 2011, 66(20): 4561-4572
    26 Liu RJ, Xiao R, Ye M, et al. Analysis of particle rotation in fluidized bed by use of discrete particle model. Advanced Powder Technology, 2018, 29(7): 1655-1663
    27 Thomas PJ. On the influence of the Basset history force on the motion of a particle through a fluid. Physics of Fluids A Fluid Dynamics, 1992, 4(9): 2090-2093
    28 Cheng J, Dou Y, Zhang N, et al. A new method for predicting erosion damage of suddenly contracted pipe impacted by particle cluster via CFD-DEM. Materials, 2018, 11(10): 1858-1869
    29 Zhang Y. Application and improvement of computational fluid dynamics (CFD) in solid particle erosion modeling. [PhD Thesis]. The University of Tulsa, 2006
    30 Salmana AD, Gorhamb DA, Szabó M, et al. Spherical particle movement in dilute pneumatic conveying. Powder Technology, 2005, 153: 43-50
    31 凡凤仙, 王志强, 刘举 等. 竖直振动管中颗粒毛细效应的离散元模拟. 力学学报, 2019, 51(2): 415-424
    31 (Fan Fengxian, Wang Zhiqiang, Liu Ju, et al. Discrete element simulation of particle capillary effect in vertical vibrating tube. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 415-424 (in Chinese))
    32 李鸿晶, 梅雨辰, 任永亮. 一种结构动力时程分析的积分求微方法. 力学学报, 2019, 51(5): 1507-1516
    32 (Li Hongjing, Mei Yuchen, Ren Yongliang. An integral differential method for structural dynamic time history analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1507-1516 (in Chinese))
    33 魏新容, 段绍臻, 孙金龙 等. 基于碰撞模型的斜坡滚石颗粒速度预测. 力学学报, 2020, 52(3): 707-715
    33 (Wei Xinrong, Duan Shaozhen, Sun Jinlong, et al. Particle velocity prediction of slope rolling rock based on impact model. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 707-715 (in Chinese))
    34 徐芝纶. 弹性力学简明教程. 北京: 高等教育出版社, 2002
    34 (Xu Zhilun. Concise Course of Elasticity. Beijing: Higher Education Press, 2002 (in Chinese))
    35 王帅, 郝振华, 徐鹏飞 等. 粗糙颗粒动理学及稠密气固两相流动的数值模拟. 力学学报, 2012, 44(2): 278-286
    35 (Wang Shuai, Hao Zhenhua, Xu Pengfei, et al. Coarse particle kinetics and numerical simulation of dense gas-solid two-phase flow. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 278-286 (in Chinese))
    36 Alobaid F, Baraki N, Epple B. Investigation into improving the efficiency and accuracy of CFD/DEM simulations. Particuology, 2014, 16(5): 41-53
  • 加载中
计量
  • 文章访问数:  155
  • HTML全文浏览量:  14
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-01
  • 录用日期:  2021-06-18

目录

    /

    返回文章
    返回

    重要通知

    近日,本刊多次接到来电,称有不法网站冒充《力学学报》杂志官网,并向投稿人收取高额审稿费用。在此,我们郑重申明:

    1.《力学学报》官方网站(https://lxxb.cstam.org.cn/)是本刊唯一的投稿渠道,《力学学报》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

    2.《力学学报》在稿件录用前不以任何形式向作者收取包括审稿费、中介费等在内的任何费用!请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62536271。

    感谢大家多年来对《力学学报》的支持与厚爱,欢迎继续关注我们!