EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性柔性壁上二维T-S波演化的数值研究

洪正 叶正寅

洪正, 叶正寅. 各向异性柔性壁上二维T-S波演化的数值研究[J]. 力学学报, 2021, 53(5): 1302-1312. doi: 10.6052/0459-1879-20-460
引用本文: 洪正, 叶正寅. 各向异性柔性壁上二维T-S波演化的数值研究[J]. 力学学报, 2021, 53(5): 1302-1312. doi: 10.6052/0459-1879-20-460
Hong Zheng, Ye Zhengyin. NUMERICAL INVESTIGATION OF THE EVOLUTION OF TWO-DIMENSIONAL T-S WAVES ON AN ANISOTROPIC COMPLIANT WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1302-1312. doi: 10.6052/0459-1879-20-460
Citation: Hong Zheng, Ye Zhengyin. NUMERICAL INVESTIGATION OF THE EVOLUTION OF TWO-DIMENSIONAL T-S WAVES ON AN ANISOTROPIC COMPLIANT WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1302-1312. doi: 10.6052/0459-1879-20-460

各向异性柔性壁上二维T-S波演化的数值研究

doi: 10.6052/0459-1879-20-460
基金项目: 1)国家自然科学基金资助项目(12072281)
详细信息
    作者简介:

    2)洪正, 博士研究生, 主要研究方向: 高精度计算方法、壁面流动控制. E-mail:hongzheng@mail.nwpu.edu.cn

    通讯作者:

    洪正

  • 中图分类号: V211.3

NUMERICAL INVESTIGATION OF THE EVOLUTION OF TWO-DIMENSIONAL T-S WAVES ON AN ANISOTROPIC COMPLIANT WALL

  • 摘要: 受自然界鸟类羽毛的柔性特征启发, 利用数值模拟的手段进行了各向异性柔性壁面对亚音速边界层中T-S(Tollmien-Schlichting)波空间演化的影响研究. 首先, 刚性壁面上的数值结果与线性理论预测的结果吻合得很好, 验证了所采用的高阶精度格心型有限差分方法的可靠性. 在此基础上, 将部分刚性壁面替换为柔性壁面, 结果表明柔性壁面能够减小甚至消除T-S波的不稳定增长区间, 即抑制T-S波的发展, 因而具有推迟边界层转捩的潜力. 柔性壁面的变形不仅有对应T-S波波形的成分, 还会因柔性段前缘引起波长更长, 与T-S波频率相同的壁面波动. 随后开展的参数研究表明, 增大壁面阻尼削弱了前缘引起的壁面波动; 增大壁面的刚度、张力以及弹性系数都会使得壁面的刚性增强, 整体变形幅度下降; 柔性壁面的支撑杠杆臂倾角越大, 壁面刚性越强. 以上参数的增大均会使得柔性壁面抑制T-S波的效果降低. 此外, 当流动反方向流过时, 抑制T-S波的效果也会明显下降. 这些研究结果旨在揭示鸟类高效飞行的部分奥秘, 为被动减阻提供新的思路.

     

  • [1] 张庆, 叶正寅. 基于雨燕翅膀的仿生三角翼气动特性计算研究. 力学学报, 2021,53(2):373-385

    (Zhang Qing, Ye Zhengyin. Computational investigations for aerodynamic performance of bio-inspired delta-wing based on swift-wing. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):373-385 (in Chinese))
    [2] 教柳, 张保成, 张开升 等. 两关节压力驱动柔性仿生机器鱼的设计与仿生. 力学学报, 2020,52(3):817-827

    (Jiao Liu, Zhang Baocheng, Zhang Kaisheng, et al. Design and simulation of two-joint pressure-driven soft bionic fish. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):817-827 (in Chinese))
    [3] 冯家兴, 胡海豹, 卢丙举 等. 超疏水沟槽表面通气减阻实验研究. 力学学报, 2020,52(1):24-30

    (Feng Jiaxing, Hu Haibao, Lu Bingju, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):24-30 (in Chinese))
    [4] 屈秋林, 王晋军. 鸟类飞行空气动力学对人类飞行的启示. 物理, 2016,45(10):640-644

    (Qu Qiulin, Wang Jinjun. Human flight inspired by the aerodynamics of bird flight. Physics, 2016,45(10):640-644 (in Chinese))
    [5] Videler JJ. Avian Flight. Oxford: Oxford University Press, 2006
    [6] Lincoln FC, Peterson SR, Zimmerman JL. Migration of birds. US Department of the interior, US Fish and Wildlife Service, Washington DC Circular 16. Northern Prairie Wildlife Research Center Online, 1998: 61
    [7] Croxall JP, Silk JR, Phillips RA, et al. Global circumnavigations: Tracking year-around ranges of non-breeding Albatrosses. Science, 2005,307:249-250
    [8] Gray J. Studies in animal locomotion: VI. The propulsive powers of the dolphin. Journal of Experimental Biology, 1936,13(2):192-199
    [9] Kramer MO. Boundary-layer stabilization by distributed damping. Journal of the Aerospace Sciences, 1960,27(1):69-69
    [10] Bushnell DM, Hefner JN, Ash RL. Effect of compliant wall motion on turbulent boundary layers. The Physics of Fluids, 1977,20(10):S31-S48
    [11] Carpenter PW, Garrad AD. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien-Schlichting instabilities. Journal of Fluid Mechanics, 1985,155:465-510
    [12] Carpenter PW, Garrad AD. The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities. Journal of Fluid Mechanics, 1986,170:199-232
    [13] Lucey AD, Carpenter PW. Boundary layer instability over compliant walls: Comparison between theory and experiment. Physics of Fluids, 1995,7(10):2355-2363
    [14] Lee T, Fisher M, Schwarz WH. Investigation of the effects of a compliant surface on boundary-layer stability. Journal of Fluid Mechanics, 1995,288:37-58
    [15] Davies C, Carpenter PW. Numerical simulation of the evolution of Tollmien-Schlichting waves over finite compliant panels. Journal of Fluid Mechanics, 1997,335:361-392
    [16] Wang Z, Yeo KS, Khoo BC. On two-dimensional linear waves in Blasius boundary layer over viscoelastic layers. European Journal of Mechanics-B/Fluids, 2006,25(1):33-58
    [17] Shu W, Liu W. The effect of compliant coatings on coherent structure in turbulent boundary layers. Acta Mechanica Sinica, 1990,6(2):97-101
    [18] Lee T, Fisher M, Schwarz WH. Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. Journal of Fluid Mechanics, 1993,257:373-401
    [19] Choi KS, Yang X, Clayton BR, et al. Turbulent drag reduction using compliant surfaces. Proceedings of the Royal Society of London. Series A$:$ Mathematical, Physical and Engineering Sciences, 1997,453(1965):2229-2240
    [20] Kulik VM, Lee I, Chun HH. Wave properties of coating for skin friction reduction. Physics of Fluids, 2008,20(7):075109
    [21] Luhar M, Sharma AS, McKeon BJ. A framework for studying the effect of compliant surfaces on wall turbulence. Journal of Fluid Mechanics, 2015,768:415-441
    [22] Endo T, Himeno R. Direct numerical simulation of turbulent flow over a compliant surface. Journal of Turbulence, 2002,3(7):1-10
    [23] Xu S, Rempfer D, Lumley J. Turbulence over a compliant surface: Numerical simulation and analysis. Journal of Fluid Mechanics, 2003,478:11-34
    [24] Kim E, Choi H. Space-time characteristics of a compliant wall in a turbulent channel flow. Journal of fluid mechanics, 2014,756:30-53
    [25] Xia QJ, Huang WX, Xu CX. Direct numerical simulation of turbulent boundary layer over a compliant wall. Journal of Fluids and Structures, 2017,71:126-142
    [26] Fukagata K, Kern S, Chatelain P, et al. Evolutionary optimization of an anisotropic compliant surface for turbulent drag reduction. Journal of Turbulence, 2008,9(35):1-17
    [27] Xia QJ, Huang WX, Xu CX. Direct numerical simulation of a turbulent boundary layer over an anisotropic compliant wall. Acta Mechanica Sinica, 2019,35(2):384-400
    [28] Jozsa TI. Analytical solutions of incompressible laminar channel and pipe flows driven by in-plane wall oscillations. Physics of Fluids, 2019,31(8):083605
    [29] Józsa TI, Balaras E, Kashtalyan M, et al. Active and passive in-plane wall fluctuations in turbulent channel flows. Journal of Fluid Mechanics, 2019,866:689-720
    [30] Carpenter PW, Morris PJ. The effect of anisotropic wall compliance on boundary-layer stability and transition. Journal of Fluid Mechanics, 1990,218:171-223
    [31] 刘巍, 张理论, 王勇献 等. 计算空气动力学并行编程基础. 北京: 国防工业初版社, 2013

    (Liu Wei, Zhang Lilun, Wang Yongxian, et al. Foundations of Computational Aerodynamics Parallel Programming. Beijing: National Defense Industry Press, 2013 (in Chinese))
    [32] 廖飞. 高阶精度数值方法及其在复杂流动中的应用. [博士论文]. 西安: 西北工业大学, 2018

    (Liao Fei. Efficient high-order high-resolution methods and the applications. [PhD Thesis]. Xi'an: Northwestern Polytechnical University, 2018 (in Chinese))
    [33] 洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报, 2018,50(6):1356-1367

    (Hong Zheng, Ye Zhengyin. Study on evolution characteristics of isotropic turbulence passing through a normal shock wave. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1356-1367 (in Chinese))
    [34] 洪正, 叶正寅. 不同亚格子模型在亚声速槽道流大涡模拟中的应用对比. 气体物理, 2019,4(1):33-44

    (Hong Zheng, Ye Zhengyin. Application of different subgrid-scale models used in large-eddy simulation of subsonic channel flow. Physics of Gases, 2019,4(1):33-44 (in Chinese))
    [35] 叶正寅, 洪正, 武洁. 柔性仿羽毛结构抑制边界层转捩的初步探索. 空气动力学学报, 2020,38(6):1173-1182

    (Ye Zhengyin, Hong Zheng, Wu Jie. Suppression of flexible feather-like structure on boundary layer transition. Acta Aerodynamica Sinica, 2020,38(6):1173-1182 (in Chinese))
    [36] Fasel H, Konzelmann U. Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. Journal of Fluid Mechanics, 1990,221:311-347
  • 加载中
计量
  • 文章访问数:  482
  • HTML全文浏览量:  55
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回