EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑晶体滑移面分解正应力的细观损伤模型

赵伯宇 胡伟平 孟庆春

赵伯宇, 胡伟平, 孟庆春. 考虑晶体滑移面分解正应力的细观损伤模型[J]. 力学学报, 2021, 53(5): 1355-1366. doi: 10.6052/0459-1879-20-454
引用本文: 赵伯宇, 胡伟平, 孟庆春. 考虑晶体滑移面分解正应力的细观损伤模型[J]. 力学学报, 2021, 53(5): 1355-1366. doi: 10.6052/0459-1879-20-454
Zhao Boyu, Hu Weiping, Meng Qingchun. MICROSCOPIC DAMAGE MODEL CONSIDERING THE RESOLVED NORMAL STRESS ON CRYSTAL SLIP PLANE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1355-1366. doi: 10.6052/0459-1879-20-454
Citation: Zhao Boyu, Hu Weiping, Meng Qingchun. MICROSCOPIC DAMAGE MODEL CONSIDERING THE RESOLVED NORMAL STRESS ON CRYSTAL SLIP PLANE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1355-1366. doi: 10.6052/0459-1879-20-454

考虑晶体滑移面分解正应力的细观损伤模型

doi: 10.6052/0459-1879-20-454
详细信息
    作者简介:

    1)胡伟平, 副教授, 主要研究方向: 损伤力学、金属疲劳与断裂. E-mail:huweiping@buaa.edu.cn

    通讯作者:

    胡伟平

  • 中图分类号: O346.5

MICROSCOPIC DAMAGE MODEL CONSIDERING THE RESOLVED NORMAL STRESS ON CRYSTAL SLIP PLANE

  • 摘要: 材料内部的解理、滑移面剥离等细观损伤是引起宏观失效的根源, 从细观尺度研究损伤的发生和发展有助于深入认识材料的变形和失效过程. 本文基于晶体塑性理论, 从滑移系的受力和变形出发研究材料的细观损伤, 建立了考虑滑移面分解正应力的细观损伤模型, 为晶体材料解理断裂的分析提供了新方法. 首先, 在晶体弹塑性变形构型的基础上引入损伤变形梯度张量的概念, 从变形运动学着手建立了考虑损伤能量耗散的本构方程, 并推导了塑性流动方程与损伤演化方程; 然后, 建立了相应的数值计算方法, 给出了应力与状态变量的更新算法, 推导了Jacobian矩阵的表达式; 接着, 以$[100]$取向的单晶铜材料为例, 通过有限元计算与试验结果的对比, 并采用粒子群优化算法标定了11个材料细观参数; 最后, 将所提细观损伤模型应用于RVE单轴拉伸过程的模拟, 得到了考虑损伤影响的应力应变曲线, 并分析了材料的塑性流动与损伤演化过程. 结果表明, 本文所提模型能够计算材料在受载过程中的损伤累积效应, 合理反映晶体材料的细观损伤机理.

     

  • [1] Lemaitre J. A Course on Damage Mechanics. New York: Springer Science & Business Media, 1996
    [2] 余寿文, 冯西桥. 损伤力学. 北京: 清华大学出版社, 1997

    (Yu Shouwen, Feng Xiqiao. Damage Mechanics. Beijing: Tsinghua University Press, 1997 (in Chinese))
    [3] Murakami S. Continuum Damage Mechanics. London: Springer Science & Business Media, 2012
    [4] Zhan ZX, Li H. Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. International Journal of Fatigue, 2021,142:105941
    [5] Wang XJ, Meng QC, Hu WP. Continuum damage mechanics-based model for the fatigue analysis of welded joints considering the effects of size and position of inner pores. International Journal of Fatigue, 2020,139:105749
    [6] Yang SS, Hu WP, Meng QC, et al. A new continuum damage mechanics-based two-scale model for high-cycle fatigue life prediction considering the two-segment characteristic in S-N curves. Fatigue and Fracture of Engineering Materials and Structures, 2020,43(2):387-402
    [7] 周孙基, 程磊, 王立伟 等. 连续损伤力学基临界奇异指数与破坏时间预测. 力学学报, 2019,51(5):1372-1380

    (Zhou Sunji, Cheng Lei, Wang Liwei, et al. Continuum damage mechanics-based critical singularity exponent and failure time prediction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1372-1380 (in Chinese))
    [8] 付云伟, 倪新华, 刘协权 等. 颗粒缺陷相互作用下复合材料的细观损伤模型. 力学学报, 2016,48(6):1334-1342

    (Fu Yunwei, Ni Xinhua, Liu Xiequan, et al. Micro-damage model of composite materials with particle and defect interaction. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(6):1334-1342 (in Chinese))
    [9] 卢广达, 陈建兵. 基于一类非局部宏$!-!$微观损伤模型的裂纹模拟. 力学学报, 2020,52(3):749-762

    (Lu Guangda, Chen Jianbing. Cracking simulation based on a nonlocal macro-meso-scale damage model. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):749-762 (in Chinese))
    [10] 吴建营. 固体结构损伤破坏统一相场理论、算法和应用. 力学学报, 2021,53(2):301-329

    (Wu Jianying. On the theoretical and numerical aspects of the unified phase-field theory for damage and failure in solids and structures. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):301-329 (in Chinese))
    [11] Taylor GI, Elam CF. The plastic extension and facture of aluminum crystals. Proceedings of the Royal Society of London, 1925,A108:25-51
    [12] Hill R, Rice JR. Constitutive analysis of elastic-plastic crystals at arbitrary strain. Journal of the Mechanics and Physics of Solids, 1972,20:401-413
    [13] Nielsen KL. Computational rate-independent strain gradient crystal plasticity. Journal of the Mechanics and Physics of Solids, 2020,1:104286
    [14] 郑松林. 晶体塑性有限元在材料动态响应研究中的应用进展. 高压物理学报, 2019,33(3):107-127

    (Zheng Songlin. Advances in the study of dynamic response of crystalline materials by crystal plasticity finite element modeling. Chinese Journal of High Pressure Physics, 2019,33(3):107-127 (in Chinese))
    [15] 章海明, 徐帅, 李倩 等. 晶体塑性理论及模拟研究进展. 塑性工程学报, 2020,27(5):12-32

    (Zhang Haiming, Xu Shuai, Li Qian, et al. Progress of crystal plasticity theory and simulations. Journal of Plasticity Engineering, 2020,27(5):12-32 (in Chinese))
    [16] Knight S, Diak BJ, Daymond MR. Crystal plasticity modeling of damage accumulation in dissimilar Mg alloy bi-crystals under high-cycle fatigue. International Journal of Fatigue, 2016,90:99-108
    [17] 张诚江, 胡卫兵, 王佳坡 等. 基于位错运动的镍基单晶各向异性蠕变寿命预测. 稀有金属材料与工程, 2019,48(12):3930-3938

    (Zhang Chengjiang, Hu Weibing, Wang Jiapo, et al. Anisotropic creep life prediction of nickel-based single crystal based on dislocation movement. Rare Metal Materials and Engineering, 2019,48(12):3930-3938 (in Chinese))
    [18] Zhao NL, Roy A, Wang WZ, et al. Coupling crystal plasticity and continuum damage mechanics for creep assessment in Cr-based power-plant steel. Mechanics of Materials, 2019,130:29-38
    [19] Li KS, Wang RZ, Yuan GJ, et al. A crystal plasticity-based approach for creep-fatigue life prediction and damage evaluation in a nickel-based superalloy. International Journal of Fatigue, 2021,143:106031
    [20] 赵红彬. 基于晶体塑性理论的金属材料损伤模型与计算方法. [硕士论文]. 北京: 北京航空航天大学, 2018

    (Zhao Hongbin. Theoretical model and numerical calculation method for damage of metals based on crystal plasticity theory. [Master Thesis]. Beijing: Beihang University, 2018 (in Chinese))
    [21] Boudifa M, Saanouni K, Chaboche JL. A micromechanical model for inelastic ductile damage prediction in polycrystalline metals for metal forming. International Journal of Mechanical Sciences, 2009,51:453-464
    [22] Hfaiedh N, Roos A, Badreddine H, et al. Interaction between ductile damage and textureevolution in finite polycrystalline elastoplasticity. International Journal of Damage Mechanics, 2018,28:1-21
    [23] Zghal J, Gmati H, Mareau C, et al. A crystal plasticity based approach for the modelling of high cycle fatigue damage in metallic materials. International Journal of Damage Mechanics, 2016,10:1-18
    [24] Aslan O, Quilici S, Forest S. Numerical modelling of fatigue crack growth in single crystals based on microdamage theory. International Journal of Damage Mechanics, 2011,20(5):681-705
    [25] Forest S. Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proceedings of the Royal Society A$:$ Mathematical, Physical and Engineering Science, 2016,472:20150755
    [26] Sabnis PA, Forest S, Cormier J. Microdamage modelling of crack initiation and propagation in FCC single crystals under complex loading conditions. Computer Methods in Applied Mechanics and Engineering, 2016,312:468-491
    [27] Shanthraj P, Svendsen B, Sharma L, et al. Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. Journal of the Mechanics and Physics of Solids, 2017,99:19-34
    [28] Al-Rub RKA, Voyiadjis GZ. On the coupling of anisotropic damage and plasticity models for ductile materials. International Journal of Solids and Structures, 2003,40(11):2611-2643
    [29] Bammann DJ, Solanki KN. On kinematic, thermodynamic, and kinetic coupling of a damage theory for polycrystalline material. International Journal of Plasticity, 2010,26(6):775-793
    [30] Balieu R, Lauro F, Bennani B, et al. A fully coupled elastoviscoplastic damage model at finite strains for mineral filled semi-crystalline polymer. International Journal of Plasticity, 2013,51:241-270
    [31] Carrara P, Lorenzis LD. A coupled damage-plasticity model for the cyclic behavior of shear-loaded interfaces. Journal of the Mechanics and Physics of Solids, 2015,85:33-53
    [32] 陈明祥. 弹塑性力学. 北京: 科学出版社, 2007: 240-244

    (Chen Mingxiang. Elasticity and Plasticity. Beijing: Science Press, 2007: 240-244(in Chinese))
    [33] 赵伯宇, 胡伟平, 孟庆春. 晶体塑性理论的数值算法研究//中国力学大会2019年会议论文集, 中国力学大会, 杭州, 2019: 1028-1037

    (Zhao Boyu, Hu Weiping, Meng Qingchun. Study on numerical algorithm of crystal plasticity theory//Proceedings of CCTAM 2019, The Chinese Congress of the Theoretical and Applied Mechanics, Hangzhou, 2019: 1028-1037 (in Chinese))
    [34] Huang YG. A user-material subroutine incorporating single crystal plasticity in the ABAQUS finite element program, Mech Report 178. http://www.columbia.edu/~jk2079/Kysar_Research_Laboratory/Sin-gle_Crystal_UMAT.html. 1991
    [35] Hu L, Jiang SY, Zhang YQ, et al. Texture evolution and inhomogeneous deformation of polycrystalline Cu based on crystal plasticity finite element method and particle swarm optimization algorithm. Journal of Central South University, 2017,24:2747-2756
    [36] 石艳柯, 张克实. 铜单晶拉伸试样表面滑移带痕迹的晶体塑性分析. 固体力学学报, 2011,32(6):558-565

    (Shi Yanke, Zhang Keshi. Analysis of slip-band trace on specimen surface of single crystal copper under tension. Chinese Journal of Solid Mechanics, 2011,32(6):558-565 (in Chinese))
  • 加载中
计量
  • 文章访问数:  479
  • HTML全文浏览量:  60
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-29
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回