EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双材料界面裂纹复应力强度因子的正则化边界元法

谷岩 张耀明

谷岩, 张耀明. 双材料界面裂纹复应力强度因子的正则化边界元法[J]. 力学学报, 2021, 53(4): 1049-1058. doi: 10.6052/0459-1879-20-440
引用本文: 谷岩, 张耀明. 双材料界面裂纹复应力强度因子的正则化边界元法[J]. 力学学报, 2021, 53(4): 1049-1058. doi: 10.6052/0459-1879-20-440
Gu Yan, Zhang Yaoming. BOUNDARY ELEMENT ANALYSIS OF COMPLEX STRESS INTENSITY FACTORS OF BIMATERIAL INTERFACE CRACKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1049-1058. doi: 10.6052/0459-1879-20-440
Citation: Gu Yan, Zhang Yaoming. BOUNDARY ELEMENT ANALYSIS OF COMPLEX STRESS INTENSITY FACTORS OF BIMATERIAL INTERFACE CRACKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1049-1058. doi: 10.6052/0459-1879-20-440

双材料界面裂纹复应力强度因子的正则化边界元法

doi: 10.6052/0459-1879-20-440
基金项目: 1)国家自然科学基金(11872220);国家自然科学基金(11402075);山东省优秀青年科学基金(ZR2017JL004);山东省自然科学基金(ZR2017MA021)
详细信息
    作者简介:

    2)谷岩, 教授, 主要研究方向: 计算力学. E-mail: guyan1913@163.com; guyan@qdu.edu.cn

    通讯作者:

    谷岩

  • 中图分类号: O342

BOUNDARY ELEMENT ANALYSIS OF COMPLEX STRESS INTENSITY FACTORS OF BIMATERIAL INTERFACE CRACKS

  • 摘要: 双材料界面裂纹渐近位移和应力场表现出剧烈的振荡特性, 许多用于表征经典平方根($r^{1/2})$和负平方根($r^{-1/2})$渐近物理场的传统数值方法失效, 给界面裂纹复应力强度因子($K_{1} +{i}K_{2} )$的精确求解增加了难度. 引入一种含有复振荡因子的新型"特殊裂尖单元", 可精确表征裂纹尖端渐近位移和应力场的振荡特性, 在避免裂尖区域高密度网格剖分的情况下, 可实现双材料界面裂纹复应力强度因子的精确求解. 此外, 结合边界元法中计算近奇异积分的正则化算法, 成功求解了大尺寸比(超薄)双材料界面裂纹的断裂力学参数. 数值算例表明, 所提算法稳定, 效率高, 在不增加计算量的前提下, 显著提高了裂尖近场力学参量和断裂力学参数的求解精度和数值稳定性.

     

  • [1] 张明, 姚振汉, 杜庆华 等. 双材料界面裂纹应力强度因子的边界元分析. 应用力学学报, 1999,16(1):21-26

    (Zhang Ming, Yao Zhenhan, Du Qinghua, et al. Boundary element analysis of stress intensity factors of bimaterial interface crack. Chinese Journal of Applied Mechanics, 1999,16(1):21-26 (in Chinese))
    [2] Antwerpen VAV, Mulder WA, Herman GC. Finite-difference modeling of two-dimensional elastic wave propagation in cracked media. Geophysical Journal International, 2002,149:169-178
    [3] Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999,46(1):131-150
    [4] Cruse TA. BIE fracture mechanics analysis: 25 years of developments. Computational Mechanics, 1996,18(1):1-11
    [5] Lei J, Wang YS, Gross D. Two dimensional numerical simulation of crack kinking from an interface under dynamic loading by time domain boundary element method. International Journal of Solids and Structures, 2007,44(3):996-1012
    [6] 高效伟, 郑保敬, 刘健. 功能梯度材料动态断裂力学的径向积分边界元法. 力学学报, 2015,47(5):868-873

    (Gao Xiaowei, Zheng Baojing, Liu Jian. Dynamic fracture analysis of functionally graded materials by radial integration BEM. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(5):868-873 (in Chinese))
    [7] 程玉民, 嵇醒, 贺鹏飞. 动态断裂力学的无限相似边界元法. 力学学报, 2004,36(1):43-48

    (Cheng Yumin, Ji Xing, He Pengfei. Infinite similar boundary element method for dynamic fracture mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2004,36(1):43-48 (in Chinese))
    [8] 牛忠荣, 程长征, 胡宗军 等. V形切口应力强度因子的一种边界元分析方法. 力学学报, 2008,40(5):849-857

    (Niu Zhongrong, Cheng Changzheng, Hu Zongjun, Ye Jianqiao. Boundary element analysis of the stress intensity factors for the v-notched structures. Chinese Journal of Theoretical and Applied Mechanics, 2008,40(5):849-857 (in Chinese))
    [9] 秦太验, 汤任基, 陈卫江. 三维有限体平片裂纹的超奇异积分方程与边界元法. 力学学报, 1997,29(3):481-485

    (Qin Taiyan, Tang Renji, Chen Weijiang. Hypersingular integral equations and boundary element method for planar crack problems in three-dimensional finite bodies. Chinese Journal of Theoretical and Applied Mechanics, 1997,29(3):481-485 (in Chinese))
    [10] Duflot M. A meshless method with enriched weight functions for three-dimensional crack propagation. International Journal for Numerical Methods in Engineering, 2006,65(12):1970-2006
    [11] 陈莘莘, 王娟. 反平面断裂问题的无单元伽辽金比例边界法. 计算力学学报, 2017,34:57-61

    (Chen Shenshen, Wang Juan. An element-free Galerkin scaled boundary method for anti-plane crack problem. Chinese Journal of Computational Mechanics, 2017,34:57-61 (in Chinese))
    [12] Wu ZJ, Wong LNY. Frictional crack initiation and propagation analysis using the numerical manifold method. Computers and Geotechnics, 2012,39:38-53
    [13] 焦玉勇, 张秀丽, 刘泉声 等. 用非连续变形分析方法模拟岩石裂纹扩展. 岩石力学与工程学报, 2007,26:682-691

    (Jiao Yu-yong, Zhang Xiuli, Liu Quansheng, Chen Weizhong. Simulation of rock crack propagation using discontinuous deformation analysis method. Chinese Journal of Rock Mechanics and Engineering, 2007,26:682-691 (in Chinese))
    [14] Rountree CL, Kalia RK, Lidorikis E, et al. Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular dynamics simulations. Annual Review of Materials Research, 2002,32:377-400
    [15] Erdogan F. Stress distribution in bonded dissimilar materials with cracks. Journal of Applied Mechanics, 1965,32(2):403-410
    [16] Williams ML. The stresses around a fault or crack in dissimilar media. Bulletin of the Seismological Society of America, 1959,49(2):199-204
    [17] England AH. A crack between dissimilar media. Journal of Applied Mechanics, 1965,32(2):400-402
    [18] Yuuki R, Xu JQ. Boundary element analysis of dissimilar materials and interface crack. Computational Mechanics, 1994,14(2):116-127
    [19] Ortiz JE, Cisilino AP. Boundary element method for J-integral and stress intensity factor computations in three-dimensional interface cracks. International Journal of Fracture, 2005,133(3):197-222
    [20] Liu Y, Fan H. Analysis of thin piezoelectric solids by the boundary element method. Computer Methods in Applied Mechanics and Engineering, 2002,191(21-22):2297-2315
    [21] Luo JF, Liu YJ, Berger EJ. Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method. Computational Mechanics, 1998,22(5):404-412
    [22] Zhou HL, Niu ZR, Cheng CZ, et al. Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems. Computers & Structures, 2008,86(15):1656-1671
    [23] Sladek V, Sladek J, Tanaka M. Nonsingular BEM formulations for thin-walled structures and elastostatic crack problems. Acta Mechanica, 1993,99(1):173-190
    [24] Xie G, Zhang J, Dong Y, et al. An improved exponential transformation for nearly singular boundary element integrals in elasticity problems. International Journal of Solids and Structures, 2014,51(6):1322-1329
    [25] Niu Z, Zhou H. The natural boundary integral equation in potential problems and regularization of the hypersingular integral. Computers & Structures, 2004,82(2-3):315-323
    [26] Ma H, Kamiya N. A general algorithm for the numerical evaluation of nearly singular boundary integrals of various orders for two- and three-dimensional elasticity. Computational Mechanics, 2002,29(4):277-288
    [27] Gao XW. An effective method for numerical evaluation of general 2D and 3D high order singular boundary integrals. Computer Methods in Applied Mechanics and Engineering, 2010,199(45-48):2856-2864
    [28] Gu Y, Zhang C. Novel special crack-tip elements for interface crack analysis by an efficient boundary element method. Engineering Fracture Mechanics, 2020,239:107302
    [29] 张耀明, 孙翠莲, 谷岩. 边界积分方程中近奇异积分计算的一种变量替换法. 力学学报, 2008,40(2):207-214

    (Zhang Yaoming, Sun Cuilian, Gu Yan. The evaluation of nearly singular integrals in the boundary integral equations with variables transformation. Chinese Journal of Theoretical and Applied Mechanics, 2008,40(2):207-214 (in Chinese))
    [30] Zhang YM, Gu Y, Chen JT. Boundary element analysis of the thermal behaviour in thin-coated cutting tools. Engineering Analysis with Boundary Elements, 2010,34(9):775-784
    [31] Rice JR. Elastic fracture mechanics concepts for interfacial cracks. Journal of Applied Mechanics, 1988,55(1):98-103
    [32] 张耀明, 谷岩, 陈正宗. 位势边界元法中的边界层效应与薄体结构. 力学学报, 2010,42(2):219-227

    (Zhang Yaoming, Gu Yan, Chen Jeng-Tzong. Boundary layer effect and thin body structure in BEM for potential problems. Chinese Journal of Theoretical and Applied Mechanics, 2010,42(2):219-227 (in Chinese))
    [33] Gu Y, Chen W, Zhang C. Stress analysis for thin multilayered coating systems using a sinh transformed boundary element method. International Journal of Solids and Structures, 2013,50(20-21):3460-3471
  • 加载中
计量
  • 文章访问数:  399
  • HTML全文浏览量:  41
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-19
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回