EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LBM的壁湍流跨尺度能量传递结构统计

高铨 邱翔 夏玉显 李家骅 刘宇陆

高铨, 邱翔, 夏玉显, 李家骅, 刘宇陆. 基于LBM的壁湍流跨尺度能量传递结构统计[J]. 力学学报, 2021, 53(5): 1257-1267. doi: 10.6052/0459-1879-20-432
引用本文: 高铨, 邱翔, 夏玉显, 李家骅, 刘宇陆. 基于LBM的壁湍流跨尺度能量传递结构统计[J]. 力学学报, 2021, 53(5): 1257-1267. doi: 10.6052/0459-1879-20-432
Gao Quan, Qiu Xiang, Xia Yuxian, Li Jiahua, Liu Yulu. STRUCTURE STATISTICS OF SCALE TO SCALE ENERGY TRANSFER OF WALL TURBULENCE BASED ON LBM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1257-1267. doi: 10.6052/0459-1879-20-432
Citation: Gao Quan, Qiu Xiang, Xia Yuxian, Li Jiahua, Liu Yulu. STRUCTURE STATISTICS OF SCALE TO SCALE ENERGY TRANSFER OF WALL TURBULENCE BASED ON LBM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1257-1267. doi: 10.6052/0459-1879-20-432

基于LBM的壁湍流跨尺度能量传递结构统计

doi: 10.6052/0459-1879-20-432
基金项目: 1)国家自然科学基金(12032016);国家自然科学基金(92052201);国家自然科学基金(91952102);上海市教育委员会和上海市教育发展基金会"曙光计划"(18SG53)
详细信息
    作者简介:

    2)邱翔, 教授, 主要研究方向: 壁湍流拟序结构. E-mail:qiux@sit.edu.cn

    通讯作者:

    邱翔

  • 中图分类号: O357.5

STRUCTURE STATISTICS OF SCALE TO SCALE ENERGY TRANSFER OF WALL TURBULENCE BASED ON LBM

  • 摘要: 壁湍流不同尺度间能量传输特性存在着明显的各向异性, 了解能量不同尺度间传递的空间分布是进一步构造高保真各向异性大涡模拟亚格子模式的前提. 基于格子Boltzmann数值(lattice Boltzmann method, LBM)模拟方法对雷诺数$Re_{\tau } =180$的槽道湍流进行直接数值模拟. 结果与公开的槽道湍流数据库进行对比, 平均速度剖面、雷诺应力和脉动速度均方根均取得了较好的一致性, 验证了LBM方法模拟槽道湍流的可靠性. 对模拟后的数据采用空间滤波方法得到不同尺度间能量交换量的空间分布场, 结合结构识别捕捉方法——聚类分析法对不同尺度间能量传输结构的空间分布特性进行了分析. 结果表明尺度间能量传输结构在全流场物理空间中主要为小尺寸结构, 结构的体积概率密度呈现出$-$4/5幂律, 按结构距壁面最小距离以结构距壁面距离又可将结构划分为附着结构和分离结构, 其中附着结构以较小的数量占比达到了较高的体积占比, 表明附着结构多为大尺寸结构, 进一步的对附着结构的统计表明结构在尺寸上存在着一定的幂律关系, 表明不同尺度间能量输运结构也具有Townsend提出的附面涡的自相似性, 最后对能量正反传附着结构的成对特性研究发现, 能量正传$\!-\!$反传结构对倾向于沿展向并排排列.

     

  • [1] 许春晓. 壁湍流相干结构和减阻控制机理. 力学进展, 2015,45:201504

    (Xu Chunxiao. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 2015,45:201504 (in Chinese))
    [2] 杨强, 袁先旭, 陈坚强 等. 不可压壁湍流中基本相干结构. 空气动力学学报, 2020,38(1):82-99

    (Yang Qiang, Yuan Xianxu, Chen Jianqiang, et al. On elementary coherent structures in incompressible wall-bounded turbulence. Acta Aerodynamica Sinica, 2020,38(1):82-99 (in Chinese))
    [3] 李思成, 吴迪, 崔光耀 等. 低雷诺数沟槽表面湍流/非湍流界面特性的实验研究. 力学学报, 2020,52(6):1632-1644

    (Li Sicheng, Wu Di, Cui Guangyao, et al. Experimental study on properties of turbulent/non-turbulent interface over riblets surfaces at low Reynolds numbers. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1632-1644 (in Chinese))
    [4] Bose ST, Park GI. Wall-modeled large-eddy simulation for complex turbulent flows. Annual Review of Fluid Mechanics, 2018,50:535-561
    [5] 强光林, 杨易, 陈阵 等. 基于车身绕流的低雷诺数湍流模型改进研究. 力学学报, 2020,52(5):1371-1382

    (Qiang Guanglin, Yang Yi, Chen Zhen, et al. Research on improvements of LRN turbulence model based on flow around automobile body. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1371-1382 (in Chinese))
    [6] Piomelli U, Cabot WH, Moin P, et al. Subgrid-scale backscatter in turbulent and transitional flows. Physics of Fluids A, 1991, 3: 1766-177?
    [7] H?rtel C, Kleiser L, Unger F, et al. Subgrid-scale energy transfer in the near-wall region of turbulent flows. Physics of Fluids, 1994,6(9):3130-3143
    [8] Piomelli U, Yu Y, Adrian RJ. Subgrid-scale energy transfer and near-wall turbulence structure. Physics of Fluids, 1996,8(1):215-224
    [9] Lin CL. Near-grid-scale energy transfer and coherent structures in the convective planetary boundary layer. Physics of Fluids, 1999,11(11):3482-3494
    [10] Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A$:$ Fluid Dynamics, 1991,3(7):1760-1765
    [11] Tian G, Xiao Z. New insight on large-eddy simulation of flow past a circular cylinder at subcritical Reynolds number 3900. AIP Advances, 2020,10(8):085321
    [12] 贾宏涛, 许春晓, 崔桂香. 槽道湍流近壁区多尺度输运特性研究. 力学学报, 2007,23(2):181-187

    (Jia Hongtao, Xu Chunxiao, Cui Guixiang. Multi-scale energy transfer in near-wall region of turbulent channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2007,23(2):181-187 (in Chinese))
    [13] 王占莹. 壁湍流多尺度能量传输与流动结构关系研究. [硕士论文]. 北京: 清华大学, 2008

    (Wang Zhanying. Study on the relationship between multi-scale energy transfer and flow structure in wall turbulence. [Master Thesis]. Beijing: Tsinghua University, 2008 (in Chinese))
    [14] Natrajan VK, Christensen KT. The role of coherent structures in subgrid-scale energy transfer within the log layer of wall turbulence. Physics of Fluids, 2006,18(6):065104
    [15] Zhou Q, Huang YX, Lu ZM, et al. Scale-to-scale energy and enstrophy transport in two-dimensional Rayleigh-Taylor turbulence. Journal of Fluid Mechanics, 2016,786:294-308
    [16] Wang L, Huang YX. Intrinsic flow structure and multifractality in two-dimensional bacterial turbulence. Physical Review E, 2017,95(5):052215
    [17] 王帅杰, 崔晓通, 白建侠 等. 减阻工况下壁面周期扰动对湍流边界层多尺度的影响. 力学学报, 2019,51(3):767-774

    (Wang Shuaijie, Cui Xiaotong, et al. The effect of periodic perturbation on multi scales in a turbulent boundary layer flow under drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):767-774 (in Chinese))
    [18] Cardesa JI, Vela-Martin A, Jimenez J. The turbulent cascade in five dimensions. Science, 2017,357(6353):782-784
    [19] Kawata T, Alfredsson PH. Inverse interscale transport of the Reynolds shear stress in plane couette turbulence. Physical Review Letters, 2018,120(24):244501
    [20] Moisy F, Jiménez J. Geometry and clustering of intense structures in isotropic turbulence. Journal of Fluid Mechanics, 2004,513:111
    [21] Del álamo JC, Jimenez J, Zandonade P, et al. Self-similar vortex clusters in the turbulent logarithmic region. Journal of Fluid Mechanics, 2006,561:329-358
    [22] Lozano-Durán A, Flores O, Jiménez J. The three-dimensional structure of momentum transfer in turbulent channels. Journal of Fluid Mechanics, 2012,694:100
    [23] Hwang J, Sung HJ. Wall-attached structures of velocity fluctuations in a turbulent boundary layer. Journal of Fluid Mechanics, 2018,856:958-983
    [24] Osawa K, Jiménez J. Intense structures of different momentum fluxes in turbulent channels. Physical Review Fluids, 2018,3(8):084603
    [25] Cheng C, Li W, Lozano-Duran A, et al. Uncovering Townsend's wall-attached eddies in low-Reynolds-number wall turbulence. Journal of Fluid Mechanics, 2020,889:A29
    [26] Cheng C, LI W, Lozano-Duran A, et al. 2020. On the structure of streamwise wall-shear stress fluctuations in turbulent channel flows. Journal of Fluid Mechanics, 2020,903:A29
    [27] Yoon M, Hwang J, Yang J, et al. Wall-attached structures of streamwise velocity fluctuations in an adverse-pressure-gradient turbulent boundary layer. Journal of Fluid Mechanics, 2020,885
    [28] Dong S, Huang YX, Yuan X, et al. The coherent structure of the kinetic energy transfer in shear turbulence. Journal of Fluid Mechanics, 2020,892:A22
    [29] 何雅玲, 王勇, 李庆. 格子Boltzmann 方法的理论及应用. 北京: 科学出版社, 2008: 31-55

    (He Yaling, Wang Yong. Lattice Boltzmann Method: Theory and Applications. Beijing: Science Press, 2008 (in Chinese))
    [30] 郭照立, 郑楚光. 格子Boltzmann方法的原理及应用. 北京: 科学出版社, 2009

    (Guo Zhaoli, Zheng Chuguang. Theory and Applications of Lattice Boltzmann Method. Beijing: Science Press, 2009(in Chinese))
    [31] Guo LZ, Zheng CG, Shi BC. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 2002,11(4):366-374
    [32] Jiménez J, Moin P. The minimal flow unit in near-wall turbulence. Journal of Fluid Mechanics, 1991,225:213-240
    [33] Spasov M, Rempfer D, Mokhasi P. Simulation of a turbulent channel flow with an entropic Lattice Boltzmann method. International Journal for Numerical Methods in Fluids, 2009,60(11):1241-1258
    [34] Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 1987,177:133-166
    [35] Lee M, Moser RD. Direct numerical simulation of turbulent channel flow up to $Re_{ au} =5200$. Journal of Fluid Mechanics, 2015,774:395-415
    [36] 许丁, 陈刚, 王娴 等. 基于多GPU的格子Boltzmann法对槽道湍流的直接数值模拟. 应用数学和力学, 2013,34(9):956-964

    (Xu Ding, Chen Gang, Wang Xian, Li Yueming. Direct numerical simulation of the wall-bounded turbulent flow by lattice Boltzmann method based on multi-GPU. Applied Mathematics and Mechanics, 2013,34(9):956-964 (in Chinese))
  • 加载中
计量
  • 文章访问数:  502
  • HTML全文浏览量:  58
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回