EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一类非局部宏-微观损伤模型的混凝土典型试件力学行为模拟

任宇东 陈建兵

任宇东, 陈建兵. 基于一类非局部宏-微观损伤模型的混凝土典型试件力学行为模拟[J]. 力学学报, 2021, 53(4): 1196-1121. doi: 10.6052/0459-1879-20-427
引用本文: 任宇东, 陈建兵. 基于一类非局部宏-微观损伤模型的混凝土典型试件力学行为模拟[J]. 力学学报, 2021, 53(4): 1196-1121. doi: 10.6052/0459-1879-20-427
Ren Yudong, Chen Jianbing. SIMULATION OF BEHAVIOUR OF TYPICAL CONCRETE SPECIMEMS BASED ON A NONLOCAL MACRO-MESO-SCALE CONSISTENT DAMAGE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1196-1121. doi: 10.6052/0459-1879-20-427
Citation: Ren Yudong, Chen Jianbing. SIMULATION OF BEHAVIOUR OF TYPICAL CONCRETE SPECIMEMS BASED ON A NONLOCAL MACRO-MESO-SCALE CONSISTENT DAMAGE MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1196-1121. doi: 10.6052/0459-1879-20-427

基于一类非局部宏-微观损伤模型的混凝土典型试件力学行为模拟

doi: 10.6052/0459-1879-20-427
基金项目: 1)国家杰出青年科学基金(51725804)
详细信息
    作者简介:

    2)陈建兵, 教授, 主要研究方向: 结构非线性分析, 结构随机动力学与工程可靠性. E-mail: chenjb@tongji.edu.cn

    通讯作者:

    陈建兵

  • 中图分类号: O346.5

SIMULATION OF BEHAVIOUR OF TYPICAL CONCRETE SPECIMEMS BASED ON A NONLOCAL MACRO-MESO-SCALE CONSISTENT DAMAGE MODEL

  • 摘要: 混凝土是一类典型的准脆性材料, 其受力过程中的非线性分析与裂纹模拟依然是具有挑战性的问题. 经典的断裂力学与损伤力学分别从间断与连续的视角对裂纹拓扑进行了描述, 是早期人们研究固体破坏问题的有力工具. 21世纪以来, 相场理论和近场动力学在预测裂纹的萌生、扩展与非线性分析方面取得了重要的进展. 最近, 结合统一相场理论与近场动力学的基本思想, 发展了一类非局部宏-微观损伤模型. 该模型引入物质点偶的概念来刻画由于变形引起的微细观损伤, 对微细观损伤在作用域中进行加权平均得到定量描述物质不连续程度的拓扑损伤. 通过具有物理机制的能量退化函数, 将拓扑损伤嵌入到连续介质-损伤力学的框架中, 这使得该模型在进行非线性分析的同时可以自然地进行裂纹模拟, 而毋须预设初始裂纹与裂纹扩展路径. 本文考虑细观物理参数的空间变异性, 采用非局部宏-微观损伤模型进行混凝土试件受力全过程的精细化模拟. 通过一维建模标定模型细观参数, 并探讨了细观参数与混凝土材料细观物理-几何特性之间的内在关联, 在此基础上采用二维模型进行精细化分析. 进而, 考察了材料参数空间变异性对混凝土单轴受拉试件和带缺口三点弯曲试件力学行为的重要影响. 本文的研究工作为非局部宏-微观损伤模型细观参数的试验标定与复杂应力状态下混凝土等准脆性材料的非线性力学行为研究提供了有意义的参考.

     

  • [1] 李杰, 吴建营, 陈建兵. 混凝土随机损伤力学. 北京: 科学出版社, 2014

    (Li Jie, Wu Jianying, Chen Jianbing. Stochastic Damage Mechanics of Concrete Structures. Beijing: Science Press, 2014 (in Chinese))
    [2] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国地震动参数区划图//GB18306-2015. 北京: 中国标准出版社, 2015

    ( General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Seismic Ground Motion Parameters Zonation Map of China//GB18306-2015. Beijing: Standards Press of China, 2015 (in Chinese))
    [3] 杨木秋, 林泓. 混凝土单轴受压受拉应力-应变全曲线的试验研究. 水利学报, 1992(6):60-66

    (Yang Muqiu, Lin Hong. Experimental study on whole stress-strain under uniaxial compression and tension. Journal of Hydraulic Engineering, 1992(6):60-66 (in Chinese))
    [4] Yue JG, Kunnath SK, Xiao Y. Uniaxial concrete tension damage evolution using acoustic emission monitoring. Construction and Building Materials, 2020,232:117281
    [5] 李杰, 卢朝辉, 张其云. 混凝土随机损伤本构关系——单轴受压分析. 同济大学学报(自然科学版), 2003,31(5):505-509

    (Li Jie, Lu Zhaohui, Zhang Qiyun. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress. Journal of Tongji University, 2003,31(5):505-509 (in Chinese))
    [6] 刘汉昆, 李杰. 单轴受拉状态下混凝土非局部化细观损伤模型. 同济大学学报(自然科学版), 2014,42(2):203-209

    (Liu Hankun, Li Jie. Nonlocal micro-damage model for concrete under uniaxial tension. Journal of Tongji University, 2014,42(2):203-209 (in Chinese))
    [7] 邬翔, 李杰. 基于细观物理机制的混凝土损伤数值仿真. 建筑材料学报, 2009,12(3):259-265

    (Wu Xiang, Li Jie. Meso-mechanism based simulation of concrete damage process. Journal of Building Materials, 2009,12(3):259-265 (in Chinese))
    [8] 李杰, 杨卫忠. 混凝土弹塑性随机损伤本构关系研究. 土木工程学报, 2009,42(2):31-38

    (Li Jie, Yang Weizhong. Elastoplastic stochastic damage constitutive law for concrete. China Civil Engineering Journal, 2009,42(2):31-38 (in Chinese))
    [9] 任晓丹. 混凝土随机损伤本构关系试验研究. [硕士论文]. 上海: 同济大学, 2006

    (Ren Xiaodan. Experimental research on stochastic damage constitutive law of concrete. [Master Thesis]. Shanghai: Tongji University, 2006 (in Chinese))
    [10] 吴锋. 混凝土单轴抗拉应力-应变全曲线的试验研究. [硕士论文]. 湖南: 湖南大学, 2006

    (Wu Feng. Experimental study on whole stress-strain curves of concrete under axial tension. [Master Thesis]. Changsha: Hunan University, 2006 (in Chinese))
    [11] Griffith AA. The phenomena of flow and rupture in solids. Philosophical Transactions of The Royal Society, 1920,221:163-198
    [12] Irwin GR. Analysis of stresses and strains near the end of a crack transversing a plate. Journal of Applied Mechanics, 1957,24:361-364
    [13] Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 1968,35(2):379-386
    [14] Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids, 1968,16(1):13-31
    [15] Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids, 1968,16(1):1-12
    [16] Kachanov LM. On the rupture time under the condition of creep. Izv. Akad. Nauk, Otd. Tekh. Nauk, 1958,8:26-31
    [17] Ju JW. On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. International Journal of Solids and Structures, 1989,25(7):803-833
    [18] Wu JY, Li J, Faria R. An energy release rate-based plastic-damage model for concrete. International Journal of Solids and Structures, 2006,43(3-4):583-612
    [19] Carpinteri A, Cornetti P, Barpi F, et al. Cohesive crack model description of ductile to brittle size-scale transition: Dimensional analysis vs. renormalization group theory. Engineering Fracture Mechanics, 2003,70(14):1809-1839
    [20] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999,45(5):601-620
    [21] Chen JS, Hillman M, Chi SW. Meshfree methods: Progress made after 20 years. Journal of Engineering Mechanics, 2017,143(4):04017001
    [22] Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 2000,48(4):797-826
    [23] Bourdin B, Francfort GA, Marigo JJ. The variational approach to fracture. Journal of Elasticity, 2008,91(1-3):5-148
    [24] Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010,83(10):1273-1311
    [25] Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010,199(45):2765-2778
    [26] Borden MJ, Hughes TJR, Landis CM, et al. A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Computer Methods in Applied Mechanics and Engineering, 2014,273:100-118
    [27] Wu JY. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 2017,103:72-99
    [28] Wu JY, Nguyen VP. A length scale insensitive phase-field damage model for brittle fracture. Journal of the Mechanics and Physics of Solids, 2018,119:20-42
    [29] Wu JY. A geometrically regularized gradient-damage model with energetic equivalence. Computer Methods in Applied Mechanics and Engineering, 2018,328:612-637
    [30] 吴建营. 固体结构损伤破坏统一相场理论、算法和应用. 力学学报, 2021,53(2):301-329

    (Wu Jianying. On the theoretical and numerical aspects of the unified phase-field theoryfor damage and failure in solids and structures. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):301-329 (in Chinese))
    [31] Hai L, Wu JY, Li J. A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids. Engineering Fracture Mechanics, 2020,225:106821
    [32] 吴建营, 陈万昕, 黄羽立. 基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测. 力学学报, 2021

    (Wu Jianying, Chen Wanxin, Huang Yuli. Computational modeling of shrinkage induced cracking in early-age concrete based on the unified phase-field theory. Chinese Journal of Theoretical and Applied Mechanics 2021 (in Chinese))
    [33] Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000,48(1):175-209
    [34] Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 2005,83(17):1526-1535
    [35] Silling SA, Epton M, Weckner O, et al. Peridynamic states and constitutive modeling. Journal of Elasticity, 2007,88(2):151-184
    [36] 黄丹, 章青, 乔丕忠 等. 近场动力学方法及其应用. 力学进展, 2010,40(4):448-459

    (Huang Dan, Zhang Qing, Qiao Peizhong, et al. A review on peridynamics (PD) method and its applications. Advances in Mechanics, 2010,40(4):448-459 (in Chinese))
    [37] 杜强. 从毗域动力学到随机跳跃过程: 非局部平衡范例及非局部微积分框架. 中国科学: 数学, 2015,45(7):939-952

    (Du Qiang. From peridynamics to stochastic jump process: Illustrations of nonlocal balance laws and nonlocal calculus framework. Science China Mathematics, 2015,45(7):939-952 (in Chinese))
    [38] Huang D, Lu GD, Qiao PZ. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. International Journal of Mechanical Sciences, 2015, 94-95:111-122
    [39] Gerstle W, Sau N, Silling S. Peridynamic modeling of concrete structures. Nuclear Engineering and Design, 2007,237(12):1250-1258
    [40] Lu GD, Chen JB. A new nonlocal macro-meso-scale consistent damage model for crack modeling of quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 2020,362:112802
    [41] 卢广达, 陈建兵 . 基于一类非局部宏-微观损伤模型的裂纹模拟. 力学学报, 2020,52(3):1-14

    (Lu Guangda, Chen Jianbing. Cracking simulation based on a nonlocal macro-meso-scale damage model. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):1-14 (in Chinese))
    [42] Chen JB, Ren YD, Lu GD. Meso-scale physical modeling of energetic degradation function in the nonlocal macro-meso-scale consistent damage model for quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 2021,374:113588
    [43] May IM, Duan Y. A local arc-length procedure for strain softening. Computers & Structures, 1997,64(1):297-303
    [44] Rao GA, Prasad BKR. Influence of the roughness of aggregate surface on the interface bond strength. Cement and Concrete Research, 2002,32(2):253-257
    [45] Vanmarcke E. Random Fields: Analysis and Synthesis. Singapore: World Scientific, 2010
    [46] Chen JB, He JR, Ren XD, et al. Stochastic harmonic function representation of random fields for material properties of structures. Journal of Engineering Mechanics, American Society of Civil Engineers, 2018,144(7):04018049
    [47] 梁诗雪, 任晓丹, 李杰. 混凝土破坏过程模拟的随机介质模型, 中国科学: 技术科学, 2013,43:807-815

    (Liang Shixue, Ren Xiaodan, Li Jie. A random medium model for simulation of concrete failure. Sci China Tech Sci, 2013,56:1273-1281 (in Chinese))
  • 加载中
计量
  • 文章访问数:  389
  • HTML全文浏览量:  60
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-13
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回