EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究

程怀玉 季斌 龙新平 槐文信

程怀玉, 季斌, 龙新平, 槐文信. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究[J]. 力学学报, 2021, 53(5): 1268-1287. doi: 10.6052/0459-1879-20-415
引用本文: 程怀玉, 季斌, 龙新平, 槐文信. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究[J]. 力学学报, 2021, 53(5): 1268-1287. doi: 10.6052/0459-1879-20-415
Cheng Huaiyu, Ji Bin, Long Xinping, Huai Wenxin. LES INVESTIGATION ON THE INFLUENCE OF CAVITATION ON THE EVOLUTION AND CHARACTERISTICS OF TIP LEAKAGE VORTEX[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1268-1287. doi: 10.6052/0459-1879-20-415
Citation: Cheng Huaiyu, Ji Bin, Long Xinping, Huai Wenxin. LES INVESTIGATION ON THE INFLUENCE OF CAVITATION ON THE EVOLUTION AND CHARACTERISTICS OF TIP LEAKAGE VORTEX[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1268-1287. doi: 10.6052/0459-1879-20-415

空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究

doi: 10.6052/0459-1879-20-415
基金项目: 1)国家自然科学基金(51822903);国家自然科学基金(51576143);国家自然科学基金(11772305);中国博士后科学基金(2020M682471)
详细信息
    作者简介:

    2)季斌, 教授, 主要研究方向: 空化机理及应用. E-mail:jibin@whu.edu.cn

    通讯作者:

    季斌

  • 中图分类号: U260.17

LES INVESTIGATION ON THE INFLUENCE OF CAVITATION ON THE EVOLUTION AND CHARACTERISTICS OF TIP LEAKAGE VORTEX

  • 摘要: 利用大涡模拟方法及一个考虑气核效应的欧拉$\!-\!$拉格朗日新空化模型, 对绕NACA0009水翼叶顶间隙泄漏涡(top-leakage vortex, TLV)及其空化流动开展了高精度的模拟, 结果显示数值模拟与实验吻合较好. 在此基础上进一步讨论了不同间隙大小对TLV空化的演变行为及其发生前后TLV强度、气核分布以及切向速度分布等特征参数的变化规律, 分析了TLV空化对TLV演变行为及其特征参数的影响机制. 结果表明, 空化发生后, TLV的强度主要受片空化演变行为的影响, TLV空化对其自身强度的影响较小. 此外, 间隙越小, 片空化越不稳定, TLV的强度也会呈现相应的准周期性波动. 随着间隙的逐渐增大, 片空化强度逐渐减小, 其不稳定性也逐步减弱, TLV强度逐渐恢复至无空化时的水平, 其波动也会逐渐减小. 空化对涡心处气核分布会产生较为明显的影响, 其影响程度取决于空化发生后TLV在空间上的稳定性以及TLV空化的强度. 此外, 空化发生后, TLV半径会在一定程度上增大, 且在空化区域外围形成``类刚体旋转''的切向速度分布特性, 其形成原因主要是空化生长引起的膨胀过程以及流动的黏性作用.

     

  • [1] Zhang DS, Shi WD, Pan DZ, et al. Numerical and experimental investigation of tip leakage vortex cavitation patterns and mechanisms in an axial flow pump. Journal of Fluids Engineering, 2015,137(12):121103
    [2] Chen LY, Zhang LX, Peng XX, et al. Influence of water quality on the tip vortex cavitation inception. Physics of Fluids, 2019,31(2):023303
    [3] 赵宇, 王国玉, 黄彪 等. 非定常空化流动涡旋运动及其流体动力特性. 力学学报, 2014,46(2):191-200

    (Zhao Yu, Wang Guoyu, Huang Biao, et al. Study of turbulent vortex and hydraulic dynamics in transient sheet/cloud cavitating flows. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(2):191-200 (in Chinese))
    [4] 王一伟, 黄晨光, 杜特专 等. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 2012,44(1):39-48

    (Wang Yiwei, Huang Chenguang, Du Tezhuan, et al. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(1):39-48 (in Chinese))
    [5] 孙帅辉, 刘蓉, 郭鹏程 等. 转速对涡旋液泵空化性能的影响. 流体机械, 2018,46(4):23-28, 17

    (Sun Shuaihui, Liu Rong, Guo Pengcheng, et al. Effect of rotational speed on the cavitation characteristics and performance of scroll hydraulic pump. Fluid Machinery, 2018,46(4):23-28, 17 (in Chinese))
    [6] 谢庆墨, 陈亮, 张桂勇 等. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报, 2020,52(4):1045-1054

    (Xie Qingmo, Chen Liang, Zhang Guiyong, et al. Analysis of unsteady cavitation flowover hydrofoil based on dynamic mode decomposition. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):1045-1054 (in Chinese))
    [7] 王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展. 力学进展, 2018,48:259-298

    (Wang Yiwei, Huang Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process. Advances in Mechanics, 2018,48:259-298 (in Chinese))
    [8] Wu WB, Liu YL, Zhang AM, et al. Numerical investigation on underwater explosion cavitation characteristics near water wave. Ocean Engineering, 2020,205:107321
    [9] 王巍, 张庆典, 唐滔 等. 射流对绕水翼云空化流动抑制机理研究. 力学学报, 2020,52(1):12-23

    (Wang Wei, Zhang Qingdian, Tang Tao, et al. Mechanism investigation of water injection on suppressing hydrofoil cloud cavitation flow. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):12-23 (in Chinese))
    [10] 张皓晨, 左志钢, 刘树红 等. 高速涡轮泵额定工况空化特性及压力脉动预测. 工程热物理学报, 2015,36(12):2633-2636

    (Zhang Haochen, Zuo Zhigang, Liu Shuhong, et al. Characteristics of cavitation and prediction of pressure fluctuation at rated condition in high-speed turbopump. Journal of Engineering Thermophysics, 2015,36(12):2633-2636 (in Chinese))
    [11] 卢佳兴, 魏英杰, 王聪 等. 圆柱体并联入水过程空泡演化特性实验研究. 力学学报, 2019,51(2):450-461

    (Lu Jiaxing, Wei Yingjie, Wang Cong, et al. Experimental study on cavity evolution characteristics in the Water-entry process of parallel cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):450-461 (in Chinese))
    [12] 季斌, 程怀玉, 黄彪 等. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019,49:428-479

    (Ji Bin, Cheng Huaiyu, Huang Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019,49:428-479 (in Chinese))
    [13] 王畅畅, 黄彪, 王国玉. 空化可压缩流动空穴溃灭激波特性研究. 力学学报, 2018,50(5):990-1002

    (Wang Changchang, Wang Guoyu, Huang Biao. Numerical simulation of shock wave dynamics in transient turbulent cavitating flows. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):990-1002 (in Chinese))
    [14] 高远, 黄彪, 吴钦 等. 绕水翼空化流动及振动特性的实验研究. 力学学报, 2015,47(6):1009-1016

    (Gao Yuan, Huang Biao, Wu Qin, et al. Experimental investigation of the vibration characteristics of hydrofoil in cavitating flow. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(6):1009-1016 (in Chinese))
    [15] Huang X, Hu HB, Li S, et al. Nonlinear dynamics of a cavitation bubble pair near a rigid boundary in a standing ultrasonic wave field. Ultrasonics Sonochemistry, 2020,64:104969
    [16] 张虎, 左逢源, 张德胜 等. 绕水翼间隙涡结构形成机理与间隙几何影响. 浙江大学学报(工学版), 2020,54(11):1-12

    (Zhang Hu, Zuo Fengyuan, Zhang Desheng, et al. Formation mechanism and geometric influence of tip clearance vortex structure around hydrofoil. Journal of Zhejiang University (Engineering Science), 2020,54(11):1-12 (in Chinese))
    [17] 张德胜, 沈熙, 董亚光 等. 不同叶顶间隙下斜流泵内部流动特性的数值模拟. 排灌机械工程学报, 2020,38(8):757-763

    (Zhang Desheng, Shen Xi, Dong Yaguang, et al. Numerical simulation of different blade tip clearances on internal flow characteristics in mixed-flow pump. Journal of Drainage and Irrigation Machinery Engineering, 2020,38(8):757-763 (in Chinese))
    [18] Dreyer M. Mind the gap: Tip leakage vortex dynamics and cavitation in axial turbines. [PhD Thesis].  Lausanne, Switzerland: école polytechnique fédérale de Lausanne, 2015
    [19] Dreyer M, Decaix J, Munch-Alligne C, et al. Mind the gap: a new insight into the tip leakage vortex using stereo-PIV. Experiments in Fluids, 2014,55(11):1894
    [20] Zierke WC, Straka WA. Flow visualization and the three-dimensional flow in an axial-flow pump. Journal of Propulsion and Power, 1996,12(2):250-259
    [21] Muthanna C, Devenport WJ. Wake of a compressor cascade with tip gap, Part 1: Mean flow and turbulence structure. Aiaa Journal, 2004,42(11):2320-2331
    [22] Inoue M, Kuroumaru M, Fukuhara M. Behavior of tip leakage flow behind an axial compressor rotor. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 1986,108(1):7-14
    [23] Storer JA, Cumpsty NA. Tip leakage flow in axial compressors. Journal of Turbomachinery, 1991,113(2):252-259
    [24] Boulon O, Callenaere M, Franc JP, et al. An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil. Journal of Fluid Mechanics, 1999,390:1-23
    [25] Mccormick BW, Jr . On cavitation produced by a vortex trailing from a lifting surface. Journal of Basic Engineering, 1962,84(3):369-378
    [26] Stinebring DR, Farrell KJ, Billet ML. The structure of a three-dimensional tip vortex at high reynolds numbers. Journal of Fluids Engineering, 1991,113(3):496-503
    [27] Fruman DH, Cerrutti P, Pichon T, et al. Effect of hydrofoil planform on tip vortex roll-up and cavitation. Journal of Fluids Engineering, 1995,117(1):162-169
    [28] Peng XX, Xu LH, Liu YW, et al. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil. Journal of Hydrodynamics, 2017,29(6):939-953
    [29] Zhang LX, Zhang N, Peng XX, et al. A review of studies of mechanism and prediction of tip vortex cavitation inception. Journal of Hydrodynamics, 2015,27(4):488-495
    [30] Amini A, Reclari M, Sano T, et al. On the physical mechanism of tip vortex cavitation hysteresis. Experiments in Fluids, 2019,60(7):118
    [31] Oweis GF, Van Der Hout IE, Iyer C, et al. Capture and inception of bubbles near line vortices. Physics of Fluids, 2005,17:022105
    [32] 潘森森. 空化核最新研究评述. 力学进展, 1985,15(3):329-332

    (Pan Sensen. Critical review on cavitation nuclei research. Advances in Mechanics, 1985,15(3):329-332 (in Chinese))
    [33] Asnaghi A, Svennberg U, Bensow RE. Analysis of tip vortex inception prediction methods. Ocean Engineering, 2018,167:187-203
    [34] Li XS, Li XL. All-speed Roe scheme for the large eddy simulation of homogeneous decaying turbulence. International Journal of Computational Fluid Dynamics, 2016,30(1):69-78
    [35] Bai XR, Cheng HY, Ji B, et al. Large eddy simulation of tip leakage cavitating flow focusing on cavitation-vortex interaction with Cartesian cut-cell mesh method. Journal of Hydrodynamics, 2018,30(4):750-753
    [36] Cheng HY, Long XP, Ji B, et al. LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow. Ocean Engineering, 2019,186:106115
    [37] Cheng HY, Bai XR, Long XP, et al. Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence. Applied Mathematical Modelling, 2020,77:788-809
    [38] Xu MH, Cheng HY, Ji B, et al. LES of tip-leakage cavitating flow with special emphasis on different tip clearance sizes by a new Euler-Lagrangian cavitation model. Ocean Engineering, 2020,213:107661
    [39] Long XP, Cheng HY, Ji B, et al. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil. International Journal of Multiphase Flow, 2018,100:41-56
    [40] Cheng HY, Long XP, Ji B, et al. A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas. International Journal of Multiphase Flow, 2020: 103441
    [41] Spalart PR, Shur M. On the sensitization of turbulence models to rotation and curvature. Aerospace Science and Technology, 1997,1(5):297-302
    [42] Guo Q, Zhou LJ, Wang ZW, et al. Numerical simulation for the tip leakage vortex cavitation. Ocean Engineering, 2018,151:71-81
    [43] Arndt REA, Keller AP. Water quality effects on cavitation inception in a trailing vortex. Journal of Fluids Engineering, 1992,114(3):430-438
  • 加载中
计量
  • 文章访问数:  363
  • HTML全文浏览量:  34
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-04
  • 刊出日期:  2021-05-18

目录

    /

    返回文章
    返回