[1] |
谢志南, 郑永路, 章旭斌 等. 弱形式时域完美匹配层 —— 滞弹性近场波动数值模拟. 地球物理学报, 2019,62(8):3140-3154(Xie Zhinan, Zheng Yonglu, Zhang Xubin, et al. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite-domain. Chinese Journal of Geophysics, 2019,62(8):3140-3154 (in Chinese))
|
[2] |
Zhao M, Wu LH, Du XL, et al. Stable high-order absorbing boundary condition based on new continued fraction for scalar wave propagation in unbounded multilayer media. Computer Methods in Applied Mechanics and Engineering, 2018,334:111-137
|
[3] |
Gao YJ, Song HJ, Zhang JH, et al. Comparison of artificial absorbing boundaries for acoustic wave equation modeling. Exploration Geophysics, 2017,48:76-93
|
[4] |
Huang JJ. An incrementation-adaptive multi-transmitting boundary for seismic fracture analysis of concrete gravity dams. Soil Dynamics and Earthquake Engineering, 2018,110:145-158
|
[5] |
Xing HJ, Li XJ, Li HJ, et al. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling. Soil Dynamics and Earthquake Engineering, 2021,140:1-15
|
[6] |
邢浩洁, 李鸿晶. 透射边界条件在波动谱元模拟中的实现: 二维波动. 力学学报, 2017,49(4):894-906(Xing Haojie, Li Hongjing. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: Two dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):894-906 (in Chinese))
|
[7] |
Levin T, Turkel E, Givoli D. Obstacle identification using the TRAC algorithm with a second order ABC. International Journal for Numerical Methods in Engineering, 2019,118(2):61-92
|
[8] |
Halpern L, Trefethen LN. Wide-angle one-way wave equations. Journal of the Acoustical Society of America, 1988,84(4):1397-1404
|
[9] |
Higdon RL. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation. Mathematics of Computation, 1986,47(176):437-459
|
[10] |
Higdon RL. Radiation boundary conditions for elastic wave propagation. SIAM Journal on Numerical Analysis, 1990,27(4):831-870
|
[11] |
Givoli D, Neta B. High-order non-reflecting boundary scheme for time-dependent waves. Journal of Computational Physics, 2003,186:24-46
|
[12] |
Givoli D, Neta B, Patlashenko I. Finite-element analysis of time-dependent semi-infinite wave-guides with high-order boundary treatment. International Journal for Numerical Methods in Engineering, 2003,58:1955-1983
|
[13] |
Hagstrom T, Warburton T. A new auxiliary variable formulation of high-order local radiation boundary conditions: Corner compatibility conditions and extensions to first-order systems. Wave Motion, 2004,39:327-338
|
[14] |
Hagstrom T, Mar-Or A, Givoli D. High-order local absorbing conditions for the wave equation: Extensions and improvements. Journal of Computational Physics, 2008,227:3322-3357
|
[15] |
Guddati MN, Tassoulas JL. Continued-fraction absorbing boundary conditions for the wave equation. Journal of Computational Acoustics, 2000,8(1):139-156
|
[16] |
Guddati MN, Heidari AH. Migration with arbitrary wide-angle wave equations. Geophysics, 2005,70(3):1-10
|
[17] |
Lindman EL. "Free-space" boundary conditions for the time dependent wave equation. Journal of Computational Physics, 1975,18:66-78
|
[18] |
Peng CB, Toks?z MN. An optimal absorbing boundary condition for finite-difference modeling of acoustic and elastic wave propagation. Journal of the Acoustical Society of America, 1994,95(2):733-745
|
[19] |
Randall CJ. Absorbing boundary condition for the elastic wave equation. Geophysics, 1988,53(5):611-624
|
[20] |
Liu Y, Sen MK. An improved hybrid absorbing boundary condition for wave equation modeling. Journal of Geophysics and Engineering, 2018,15:2602-2613
|
[21] |
徐世刚, 刘洋. 基于优化有限差分和混合吸收边界条件的三维VTI介质声波和弹性波数值模拟. 地球物理学报, 2018,61(7):2950-2968(Xu Shigang, Liu Yang. 3D acoustic and elastic VTI modeling with optimal finite-difference schemes and hybrid absorbing boundary conditions. Chinese Journal of Geophysics, 2018,61(7):2950-2968 (in Chinese))
|
[22] |
Cheng NY, Cheng CH. Relationship between Liao and Clayton-Engquist absorbing boundary conditions: Acoustic case. Bulletin of the Seismological Society of America, 1995,85(3):954-956
|
[23] |
高毅超, 徐艳杰, 金峰. 基于高阶双渐近透射边界的重力坝-层状地基动力相互作用分析. 地球物理学报, 2019,62(7):2582-2590(Gao Yichao, Xu Yanjie, Jin Feng. The dynamic analysis of gravity dam-layered foundation interaction based on a high-order double asymptotic open boundary. Chinese Journal of Geophysics, 2019,62(7):2582-2590 (in Chinese))
|
[24] |
吴利华, 赵密, 杜修力. 黏弹性多层介质中SH波动的一种吸收边界条件. 力学学报, 2020,52(2):480-490(Wu Lihua, Zhao Mi, Du Xiuli. An absorbing boundary condition for SH wave propagation in viscoelastic multilayered media. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):480-490 (in Chinese))
|
[25] |
Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 1985,50(4):705-708
|
[26] |
Yang JB, Yu FM, Michael K, et al. The Perfectly Matched Layer absorbing boundary for fluid--structure interactions using the Immersed Finite Element Method. Journal of Fluids and Structures, 2018,76:135-152
|
[27] |
Higdon RL. Absorbing boundary conditions for elastic waves. Geophysics, 1991,56(2):231-241
|
[28] |
Liao ZP. Extrapolation non-reflecting boundary conditions. Wave Motion, 1996,24:117-138
|
[29] |
李小军, 廖振鹏. 时域局部透射边界的计算飘移失稳. 力学学报, 1996,28(5):627-632(Li Xiaojun, Liao Zhenpeng. The drift instability of local transmitting boundary in time domain. Chinese Journal of Theoretical and Applied Mechanics, 1996,28(5):627-632 (in Chinese))
|
[30] |
周正华, 廖振鹏. 消除多次透射公式飘移失稳的措施. 力学学报, 2001,33(4):550-554(Zhou Zhenghua, Liao Zhenpeng. A measure for eliminating drift instability of the multi-transmitting formula. Chinese Journal of Theoretical and Applied Mechanics, 2001,33(4):550-554 (in Chinese))
|
[31] |
陈少林, 廖振鹏. 多次透射公式在衰减波场中的实现. 地震学报, 2003,25(3):272-280(Chen Shaolin, Liao Zhenpeng. Multi-transmitting formula for attenuating waves. Acta Seismologica Sinica, 2003,25(3):272-280 (in Chinese))
|
[32] |
Bayliss A, Turkel E. Radiation boundary conditions for wave-like equations. Communications on Pure and Applied Mathematics, 1980,XXXIII:707-725
|
[33] |
Reynolds AC. Boundary conditions for the numerical solution of wave propagation problems. Geophysics, 1978,43(6):1099-1110
|
[34] |
Keys RG. Absorbing boundary conditions for acoustic media. Geophysics, 1985,50(6):892-902
|
[35] |
Fuyuki M, Matsumoto Y. Finite difference analysis of Rayleigh wave scattering at a trench. Bulletin of the Seismological Society of America, 1980,70(6):2051-2069
|
[36] |
Emerman SH, Stephen RA. Comment on "Absorbing boundary conditions for acoustic and elastic wave equations," by R. Clayton and E. Engquist. Bulletin of the Seismological Society of America, 1983,73(2):661-665
|
[37] |
Stacey R. Improved transparent boundary formulations for the elastic-wave equation. Bulletin of the Seismological Society of America, 1988,78(6):2089-2097
|
[38] |
Bécache E, Givoli D, Hagstrom T. High-order absorbing boundary conditions for anisotropic and convective wave equations. Journal of Computational Physics, 2010,229:1099-1129
|
[39] |
Kausel E. Local transmitting boundaries. Journal of Engineering Mechanics, 1988,114(6):1011-1027
|
[40] |
吴利华, 赵密, 杜修力. 黏弹性多层介质中SH波动的一种吸收边界条件. 力学学报, 2020,52(2):480-490(Wu Lihua, Zhao Mi, Du Xiuli. An absorbing boundary condition for SH wave propagation in viscoelastic multilayered media. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):480-490 (in Chinese))
|
[41] |
李述涛, 刘晶波, 宝鑫. 采用黏弹性人工边界单元时显式算法稳定性的改善研究. 力学学报, 2020,52(6):1838-1849(Li Shutao, Liu Jingbo, Bao Xin. Improvement of explicit algorithms stability with visco-elastic artificial boundary elements. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1838-1849 (in Chinese))
|
[42] |
陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架. 力学学报, 2019,51(2):594-606(Chen Shaolin, Ke Xiaofei, Zhang Hongxiang. A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):594-606 (in Chinese))
|
[43] |
陈少林, 孙杰, 柯小飞. 平面波输入下海水-海床-结构动力相互作用分析. 力学学报, 2020,52(2):578-590(Chen Shaolin, Sun Jie, Ke Xiaofei. Analysis of water-seabed-structure dynamic interaction excited by plane waves. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):578-590 (in Chinese))
|