EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向增材制造的应力最小化连通性拓扑优化

王超 徐斌 段尊义 荣见华

王超, 徐斌, 段尊义, 荣见华. 面向增材制造的应力最小化连通性拓扑优化[J]. 力学学报, 2021, 53(4): 1070-1080. doi: 10.6052/0459-1879-20-389
引用本文: 王超, 徐斌, 段尊义, 荣见华. 面向增材制造的应力最小化连通性拓扑优化[J]. 力学学报, 2021, 53(4): 1070-1080. doi: 10.6052/0459-1879-20-389
Wang Chao, Xu Bin, Duan Zunyi, Rong Jianhua. ADDITIVE MANUFACTURING-ORIENTED STRESS MINIMIZATION TOPOLOGY OPTIMIZATION WITH CONNECTIVITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1070-1080. doi: 10.6052/0459-1879-20-389
Citation: Wang Chao, Xu Bin, Duan Zunyi, Rong Jianhua. ADDITIVE MANUFACTURING-ORIENTED STRESS MINIMIZATION TOPOLOGY OPTIMIZATION WITH CONNECTIVITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1070-1080. doi: 10.6052/0459-1879-20-389

面向增材制造的应力最小化连通性拓扑优化

doi: 10.6052/0459-1879-20-389
基金项目: 1)国家自然科学基金(11872311);国家自然科学基金(11772070);陕西省自然科学基金(2020JM085)
详细信息
    作者简介:

    2)徐斌, 教授, 主要研究方向: 结构拓扑优化, 结构动力学与控制. E-mail: xubin@nwpu.edu.cn

    通讯作者:

    徐斌

  • 中图分类号: O343

ADDITIVE MANUFACTURING-ORIENTED STRESS MINIMIZATION TOPOLOGY OPTIMIZATION WITH CONNECTIVITY

  • 摘要: 增材制造与拓扑优化的有机结合将极大促进高性能产品的研发, 但现有基于拓扑优化的设计性能和可制造性研究多是独立开展, 或常局限于传统的刚度问题, 缺乏对工程中至关重要的强度问题的考虑. 面向增材制造, 针对协同考虑强度和可制造连通性的结构优化问题, 建立了材料体积和连通性标量场约束下的结构应力最小化拓扑优化模型. 针对求解过程中的不同数值困难问题, 提出了有效的优化求解策略. 引入基于P范数的全局标量场约束度量, 并结合稳定转换误差修正技术来实现对局部标量场的有效控制. 详细推导了相关灵敏度, 然后通过典型数值算例论证了文中模型及方法的合理有效性. 结果表明, 仅考虑连通性约束的刚度最大化设计不一定能避免局部高应力集中, 而该设计也不一定等同于应力最小化连通性设计; 充足的材料许用量和恰当的连通性约束边界条件对提高所研究设计的性能至关重要, 而应力凝聚参数取值并非越大越好, 合理取值才能有助于获取高性能设计. 此外, 优化结果也在一定程度上论证了可制造性拓扑优化中考虑强度问题的必要性和可行性.

     

  • [1] Eschenauer HA, Olhoff N. Topology optimization of continuum structures: A review. Applied Mechanics Reviews, 2001,54(4):331-390
    [2] Aage N, Andreassen E, Lazarov BS, et al. Giga-voxel computational morphogenesis for structural design. Nature, 2017,550(7674):84-86
    [3] 隋允康, 边炳传. 屈曲与应力约束下连续体结构的拓扑优化. 工程力学, 2008,25(8):6-12

    (Sui Yunkang, Bian Binchuan. Topology optimization of continuum structures under bucking and stress constraints. Engineering Mechanics, 2008,25(8):6-12 (in Chinese))
    [4] 杜建镔, 宋先凯, 董立立. 基于拓扑优化的声学结构材料分布设计. 力学学报, 2011,43(2):306-315

    (Du Jianbin, Song Xiankai, Dong Lili. Design of material distribution of acoustic structure using topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(2):306-315 (in Chinese))
    [5] 胡骏, 亢战. 考虑可控性的压电作动器拓扑优化设计. 力学学报, 2019,51(4):1073-1081

    (Hu Jun, Kang Zhan. Topology optimization of piezoelectric actuator considering controllability. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1073-1081 (in Chinese))
    [6] Liu J, Gaynor AT, Chen S, et al. Current and future trends in topology optimization for additive manufacturing. Structural and multidisciplinary optimization, 2018,57(6):2457-2483
    [7] Meng L, Zhang W, Quan D, et al. From topology optimization design to additive manufacturing: Today's success and tomorrow's roadmap. Archives of Computational Methods in Engineering, 2019,27(3):805-830
    [8] Luo Y, Wang MY, Kang Z. An enhanced aggregation method for topology optimization with local stress constraints. Computer Methods in Applied Mechanics and Engineering, 2013,254:31-41
    [9] Rong JH, Xiao TT, Yu LH, et al. Continuum structural topological optimizations with stress constraints based on an active constraint technique. International Journal for Numerical Methods in Engineering, 2016,108(4):326-360
    [10] Duysinx P, van Miegroet L, Lemaire E, et al. Topology and generalized shape optimization: Why stress constraints are so important? International Journal for Simulation and Multidisciplinary Design Optimization, 2008,2(4):253-258
    [11] Guo X, Zhang WS, Wang MY, et al. Stress-related topology optimization via level set approach. Computer Methods in Applied Mechanics and Engineering, 2011,200(47-48):3439-3452
    [12] 隋允康, 叶红玲, 彭细荣 等. 连续体结构拓扑优化应力约束凝聚化的ICM方法. 力学学报, 2007,39(4):554-563

    (Sui Yunkang, Ye Hongling, Peng Xirong, et al. The ICM method for continuum structural topology optimization with condensation of stress constraints. Chinese Journal of Theoretical and Applied Mechanics, 2007,39(4):554-563 (in Chinese))
    [13] Rozvany GIN, Birker T. On singular topologies in exact layout optimization. Structural Optimization, 1994,8(4):228-235
    [14] Yang R, Chen C. Stress-based topology optimization. Structural Optimization, 1996,12(2):98-105
    [15] 龙凯, 王选, 吉亮. 面向应力约束的独立连续映射方法. 力学学报, 2019,51(2):620-629

    (Long Kai, Wang Xuan, Ji Liang. Independent continuous mapping method for stress constraint. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):620-629 (in Chinese))
    [16] 王选, 刘宏亮, 龙凯 等. 基于改进的双向渐进结构优化法的应力约束拓扑优化. 力学学报, 2018,50(2):385-394

    (Wang Xuan, Liu Hongliang, Long Kai, et al. Stress-constrained topology optimization based on improved bidirectional evolutionary optimization method. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):385-394 (in Chinese))
    [17] Xia L, Zhang L, Xia Q, et al. Stress-based topology optimization using bi-directional evolutionary structural optimization method. Computer Methods in Applied Mechanics and Engineering, 2018,333:356-370
    [18] Duysinx P, Bends?e MP. Topology optimization of continuum structures with local stress constraints. International Journal for Numerical Methods in Engineering, 1998,43(8):1453-1478
    [19] Da Silva G A, Beck A T, Sigmund O. Stress-constrained topology optimization considering uniform manufacturing uncertainties. Computer Methods in Applied Mechanics and Engineering, 2019,344:512-537
    [20] Le C, Norato J, Bruns T, et al. Stress-based topology optimization for continua. Structural and Multidisciplinary Optimization, 2010,41(4):605-620
    [21] Cheng GD, Guo X. $varepsilon $-relaxed approach in structural topology optimization. Structural Optimization, 1997,13(4):258-266
    [22] Yang D, Liu H, Zhang W, et al. Stress-constrained topology optimization based on maximum stress measures. Computers & Structures, 2018,198:23-39
    [23] 隋允康, 叶红玲, 彭细荣. 应力约束全局化策略下的连续体结构拓扑优化. 力学学报, 2006,38(3):364-370

    (Sui Yunkang, Ye Hongling, Peng Xirong. Topological optimization of continuum structure under the strategy of globalization of stress constraints. Chinese Journal of Theoretical and Applied Mechanics, 2006,38(3):364-370 (in Chinese))
    [24] Liu J, Ma Y. A survey of manufacturing oriented topology optimization methods. Advances in Engineering Software, 2016,100:161-175
    [25] 刘书田, 李取浩, 陈文炯 等. 拓扑优化与增材制造结合: 一种设计与制造一体化方法. 航空制造技术, 2017(10):26-31

    (Liu Shutian, Li Quhao, Chen Wenjiong. Combination of topology optimization and additive manufacturing: an integration method of structural design and manufacturing. Aeronautical Manufacturing Technology, 2017(10):26-31 (in Chinese))
    [26] Salonitis K. Design for additive manufacturing based on the axiomatic design method. The International Journal of Advanced Manufacturing Technology, 2016,87(1-4):989-996
    [27] Liu S, Li Q, Chen W, et al. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures. Frontiers of Mechanical Engineering, 2015,10(2):126-137
    [28] Zhou L, Zhang W. Topology optimization method with elimination of enclosed voids. Structural and Multidisciplinary Optimization, 2019,60(1):117-136
    [29] Li Q, Chen W, Liu S, et al. Structural topology optimization considering connectivity constraint. Structural and Multidisciplinary Optimization, 2016,54(4):971-984
    [30] Xiong Y, Yao S, Zhao Z, et al. A new approach to eliminating enclosed voids in topology optimization for additive manufacturing. Additive Manufacturing, 2020,32:101006
    [31] Xia Q, Shi T, Wang MY, et al. A level set based method for the optimization of cast part. Structural and Multidisciplinary Optimization, 2010,41(5):735-747
    [32] Wang Y, Kang Z. Structural shape and topology optimization of cast parts using level set method. International Journal for Numerical Methods in Engineering, 2017,111(13):1252-1273
    [33] Sigmund O, Maute K. Topology optimization approaches. Structural and Multidisciplinary Optimization, 2013,48(6):1031-1055
    [34] Sigmund O. Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 2007,33(4-5):401-424
    [35] Wang C, Xu B, Meng Q, et al. Numerical performance of Poisson method for restricting enclosed voids in topology optimization. Computers & Structures, 2020,239:106337
    [36] Jin J.  The Finite Element Method in Electromagnetics. 3rd. New Jersey: Wiley-IEEE Press, 2014: 1-7
    [37] Sigmund O, Petersson J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural and Multidisciplinary Optimization, 1998,16(1):68-75
    [38] Bruns T E, Tortorelli D A. Topology optimization of non-linear elastic structures and compliant mechanisms. Computer Methods in Applied Mechanics and Engineering, 2001,190(26):3443-3459
    [39] Bourdin B. Filters in topology optimization. International Journal for Numerical Methods in Engineering, 2001,50(9):2143-2158
    [40] Wang F, Lazarov BS, Sigmund O. On projection methods, convergence and robust formulations in topology optimization. Structural and Multidisciplinary Optimization, 2011,43(6):767-784
    [41] Gao X, Li Y, Ma H, et al. Improving the overall performance of continuum structures: A topology optimization model considering stiffness, strength and stability. Computer Methods in Applied Mechanics and Engineering, 2020,359:112660
    [42] Svanberg K. The method of moving asymptotes——a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987,24(2):359-373
  • 加载中
计量
  • 文章访问数:  562
  • HTML全文浏览量:  69
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回