EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望

吴文旺 肖登宝 孟嘉旭 刘凯 牛迎浩 薛睿 张鹏 丁文杰 叶璇 凌雪 毕颖 夏勇

吴文旺, 肖登宝, 孟嘉旭, 刘凯, 牛迎浩, 薛睿, 张鹏, 丁文杰, 叶璇, 凌雪, 毕颖, 夏勇. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3): 611-638. doi: 10.6052/0459-1879-20-333
引用本文: 吴文旺, 肖登宝, 孟嘉旭, 刘凯, 牛迎浩, 薛睿, 张鹏, 丁文杰, 叶璇, 凌雪, 毕颖, 夏勇. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3): 611-638. doi: 10.6052/0459-1879-20-333
Wu Wenwang, Xiao Dengbao, Meng Jiaxu, Liu Kai, Niu Yinghao, Xue Rui, Zhang Peng, Ding Wenjie, Ye Xuan, Ling Xue, Bi Ying, Xia Yong. MECHANICAL DESIGN, IMPACT ENERGY ABSORPTION AND APPLICATIONS OF AUXETIC STRUCTURES IN AUTOMOBILE LIGHTWEIGHT ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638. doi: 10.6052/0459-1879-20-333
Citation: Wu Wenwang, Xiao Dengbao, Meng Jiaxu, Liu Kai, Niu Yinghao, Xue Rui, Zhang Peng, Ding Wenjie, Ye Xuan, Ling Xue, Bi Ying, Xia Yong. MECHANICAL DESIGN, IMPACT ENERGY ABSORPTION AND APPLICATIONS OF AUXETIC STRUCTURES IN AUTOMOBILE LIGHTWEIGHT ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638. doi: 10.6052/0459-1879-20-333

负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望

doi: 10.6052/0459-1879-20-333
基金项目: 1) 清华大学汽车安全与节能国家重点实验室开放基金(KF1808);清华大学汽车安全与节能国家重点实验室开放基金(KF1810);西安交通大学机械结构强度与振动国家重点实验室开放基金(SV2020-KF-11);国家自然科学基金(11702023);国家自然科学基金(11802031);国家自然科学基金(11972081)
详细信息
    作者简介:

    3) 毕颖, 副教授, 主要研究方向: 轻量化结构设计. E-mail: biying@bucea.edu.cn
    2) 肖登宝, 副教授, 主要研究方向: 结构冲击动力学. E-mail: xiaodengbao@bit.edu.cn;

    通讯作者:

    肖登宝

    毕颖

  • 中图分类号: O34

MECHANICAL DESIGN, IMPACT ENERGY ABSORPTION AND APPLICATIONS OF AUXETIC STRUCTURES IN AUTOMOBILE LIGHTWEIGHT ENGINEERING

  • 摘要: 轻量化多功能负泊松比结构由于具有优异的可设计性、拉胀特性、剪切模量、断裂韧性、抗冲击吸能、减震降噪等特性,在车辆吸能结构设计和多功能优化方面具有巨大的应用潜力.本文详细综述了负泊松比结构的力学设计及其在车辆工程中的典型应用:(1)负泊松比基本概念及其力学特性, 以及近几十年来的快速发展趋势;(2)负泊松比材料与结构构型设计方法的基本分类、负泊松比泡沫材料微结构特征及制备工艺、负泊松比复合材料设计方法的基本发展历程以及前沿人工智能设计方法;(3)针对典型负泊松比结构的力学设计进行详细介绍, 主要包括手性结构、方格旋转结构、双箭头内凹结构、内凹蜂窝结构、拉伸扭转效应负泊松比结构等;(4)负泊松比材料与结构的冲击吸能特性及相关的实验、理论和模拟研究;(5)负泊松比材料与结构在汽车轻量化设计领域的典型应用, 主要包括汽车吸能盒、B柱、发动机罩、安全带、悬架、免充气轮胎等典型吸能结构件;(6)负泊松比结构在汽车工程中的应用前景, 所面临技术挑战和巨大应用潜力.

     

  • [1] Gibson LJ, Ashby MF, Schajer GS, et al. The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982,382(1782):25-42
    [2] Gibson LJ, Ashby MF. The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1982,382(1782):43-59
    [3] Kolpakov AG. Determination of the average characteristics of elastic frameworks. Journal of Applied Mathematics and Mechanics, 1985,49(6):739-745
    [4] Almgren RF. An isotropic three-dimensional structure with Poisson's ratio$=$1. Journal of Elasticity, 1985,15(4):427-430
    [5] Lakes R. Foam structures with a negative Poisson's ratio. Science, 1987,235(4792):1038-1040
    [6] Evans KE, Nkansah MA, Hutchinson IJ, et al. Molecular network design. Nature, 1991,353(6340):124-124
    [7] Milton GW. Composite materials with Poisson's ratios close to -1. Journal of the Mechanics and Physics of Solids, 1992,40(5):1105-1137
    [8] Lakes RS. Advances in negative Poisson's ratio materials. Advanced Materials, 2010,5(4):293-296
    [9] Wang YC, Lakes RS. Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson's ratio. Journal of Composite Materials. 2005,39(18):1645-1657
    [10] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报, 2019,51(3):656-689

    (Ren Xin, Zhang Xiangyu, Xie Yimin. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):656-687 (in Chinese))
    [11] Greaves GN, Greer AL, Lakes RS, et al. Poisson's ratio and modern materials. Nature Materials, 2011,10(11):823-837
    [12] Christensen J, Kadic M, Kraft O, et al. Vibrant times for mechanical metamaterials. MRS Communications, 2015,5(3):453-462
    [13] Lakes R. Foam structures with a negative Poisson's ratio. Science. 1987,235(4792):1038-1040
    [14] Critchley R, Corni I, Wharton JA, et al. A review of the manufacture, mechanical properties and potential applications of auxetic foams. Physica Status Solidi, 2013,250(10):1963-1982
    [15] Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. London: Pergamon Press, 1988
    [16] Almgren RF. An isotropic three-dimensional structure with Poisson's ratio$=$-1. Journal of Elasticity, 1985,15(4):427-430
    [17] Kolpakov AG. Determination of the average characteristics of elastic frameworks. Journal of Applied Mathematics and Mechanics, 1985,49(6):739-745
    [18] 贾然, 赵桂平. 泡沫铝本构行为研究进展. 力学学报, 2020,52(3):603-622

    (Jia Ran, Zhao Guiping. Progress in constitutive behavior of aluminum foam. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):603-62 (in Chinese))
    [19] Caddock BD, Evans KE. Mircoporous materials with negative Poisson's ratio. Microstructure and Mechanical Properties, 1989,22(12):1877-1882
    [20] Evans KE, Caddock BD. Microporous materials with negative Poisson's ratios. II. Mechanisms and interpretation. Journal of Physics D Applied Physics, 1989,22(12):1883-1887
    [21] Friis EA, Lakes RS, Park JB. Negative Poisson's ratio polymeric and metallic foams. Journal of Materials science, 1988,23(12):4406-4414.
    [22] Chan N, Evans KE. Fabrication methods for auxetic foams. Journal of Materials Science, 1997,32(22):5945-5953
    [23] Gaspar N, Smith CW, Miller EA, et al. Quantitative analysis of the microscale of auxetic foams. Physica Status Solidi, 2005,242(3):550-560.
    [24] Scarpa F, Pastorino P, Garelli A, et al. Auxetic compliant flexible PU foams: static and dynamic properties. Physica Status Solidi $($B$)$, 2005,242(3):681-694
    [25] Scarpa F, Yates JR, Ciffo LG, et al. Dynamic crushing of auxetic open-cell polyurethane foam. Journal of Mechanical Engineering Science, 2002,216(12):1153-1156
    [26] Bezazi A, Scarpa F. Mechanical behavior of conventional and negative Poisson's ratio thermoplastic polyurethane foams under compressive cyclic loading. International Journal of Fatigue, 2007,29(5):922-930
    [27] Grima JN, Attard D, Gatt R, et al. A novel process for the manufacture of auxetic foams and for their re-conversion to conventional form. Advanced Engineering Materials, 2010,11(7):533-535
    [28] Smith CW, Grima JN, Evans KE. A novel mechanism for generating auxetic behavior in reticulated foams: Missing rib foam model. Acta Materialia, 2000,48(17):4349-4356
    [29] Grima JN, Gatt R, Farrugia PS. On the properties of auxetic meta-tetrachiral structures. Physica Status Solidi, 2010,245(3):511-520
    [30] Grima JN, Alderson A, Evans KE. An alternative explanation for the negative Poisson's ratios in auxetic foams. Journal of the Physical Society of Japan, 2005,74(4):1341-1342
    [31] Rodney D, Gadot B, Martinez OR, et al. Reversible dilatancy in entangled single-wire materials. Nature Materials, 2016,15(1):72-77
    [32] Herakovich CT. Composite laminates with negative through-the-thickness Poisson's ratios. Journal of Composite Materials, 1984,18(5):447-455
    [33] Miki M, Murotsu Y. The peculiar behavior of the Poisson's ratio of laminated fibrous composites. JSME International Journal. Ser. $1$, Solid Mechanics, Strength of Materials, 1989,32(1):67-72
    [34] Milton GW. Composite materials with Poisson's ratios close to -1. Journal of the Mechanics and Physics of Solids, 1992,40(5):1105-1137
    [35] Theocaris PS, Stavroulakis GE, Panagiotopoulos PD. Negative Poisson's ratios in composites with star-shaped inclusions: A numerical homogenization approach. Archive of Applied Mechanics, 1997,67(4):274-286
    [36] Wei GY, Edwards SF. Auxeticity windows for composites. Physica A$:$ Statistical Mechanics and Its Applications, 1998,1(258):5-10
    [37] Felderho BU, Iske PL. Mean-field approximation to the effective elastic moduli of a solid suspension of spheres. Physical Review A, 1992,46(2):611-617
    [38] Felderho BU. Effective transport properties of composites of spheres. Physica A$:$ Statistical Mechanics and Its Applications, 1994,207(1):13-18
    [39] Torquato S. Exact expression for the effective elastic tensor of disordered composites. Physical Review Letters, 1997,79(4):681-684
    [40] Stagni L. Effective transverse elastic moduli of a composite reinforced with multilayered hollow-cored fibers. Composites Science & Technology, 2001,61(12):1729-1734
    [41] Ren X, Shen JH, Tranc P, et al. Design and characterisation of a tuneable 3D buckling-induced auxetic metamaterial. Materials & Design, 2018,139:336-342
    [42] Mizzi L, Mahdi EM, Titov K, et al. Mechanical metamaterials with star-shaped pores exhibiting negative and zero Poisson's ratio. Materials & Design, 2018,146:28-37
    [43] Gaspar N, Ren XJ, Smith CW, et al. Novel honeycombs with auxetic behaviour. Acta Materialia, 2005,53(8):2439-2445
    [44] Grima JN, Gatt R, Alderson A, et al. On the potential of connected stars as auxetic systems. Molecular Simulation, 2005,31(1):925-935
    [45] Bertoldi K, Reis PM, Willshaw S, et al. Negative Poisson's ratio behavior induced by an elastic instability. Advanced Materials, 2010,22(3):361-366
    [46] Milton GW. Composite materials with Poisson's ratios close to -1. Journal of the Mechanics and Physics of Solids, 1992,40(5):1105-1137
    [47] Grima JN, Mizzi L, Azzopardi KM, et al. Auxetic perforated mechanical metamaterials with randomly oriented cuts. Advanced Materials, 2016,28(2):385-389
    [48] Hu H, Wang ZY, Liu S. Development of auxetic fabrics using flat knitting technology. Textile Research Journal, 2011,81(14):1493-1502
    [49] Li TT, Hu XY, Chen YY, et al. Harnessing out-of-plane deformation to design 3D architected lattice metamaterials with tunable Poisson's ratio. Scientific Reports, 2017,7(1):1-10
    [50] Yasuda H, Yang J. Reentrant origami-based metamaterials with negative Poisson's ratio and bistability. Physical Review Letters, 2015,114(18):185502
    [51] Liu WY, Wang NL, Luo T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure. Materials & Design, 2016,100:84-91
    [52] Slann A, White W, Scarpa F, et al. Cellular plates with auxetic rectangular perforations. Physica Status Solidi, 2015,252(7):1533-1539
    [53] Mizzi L, Azzopardi KM, Attard D, et al. Auxetic metamaterials exhibiting giant negative Poisson's ratios. Physica Status Solidi Rapid Research Letters, 2015,9(7):425-430
    [54] Niu YH, GE JR, Liang J, et al. Effects of disordered circular nodes dispersion and missing ligaments on the mechanical properties of chiral structures. Physica Status Solidi $($B$)$, 2019,256(10):1800586
    [55] Grima JN, Mizzi L, Azzopardi KM, et al. Auxetic perforated mechanical metamaterials with randomly oriented cuts. Advanced Materials, 2016,28(2):385-389
    [56] Nazir MU, Shaker K, Hussain R, et al. Performance of novel auxetic woven fabrics produced using helical auxetic yarn. Materials Research Express, 2019,6(8):085703
    [57] Billon K, Zampetakis I, Scarpa F, et al. Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials. Composite Structures, 2016,160:1042-1050
    [58] Milton GW. Composite materials with Poisson's ratios close to -1. Journal of the Mechanics and Physics of Solids, 1992,40(5):1105-1137
    [59] Miller W, Hook PB, Smith CW, et al. The manufacture and characterization of a novel, low modulus, negative Poisson's ratio composite. Composites Science & Technology, 2009,69(5):651-655
    [60] Lin Y, Tan HF, Zhou ZG. Mechanical properties of 3D auxetic closed-cell cellular structures. International Journal of Mechanical Sciences, 2020:105596
    [61] Kelvin LWT. Baltimore Lectures on Molecular Dynamics and The Wave Theory of Light. London: CJ Clay and Sons, 1904
    [62] Wojciechowski KW. Two-dimensional isotropic system with a negative Poisson ratio. Physics Letters A, 1989,137:60-64
    [63] Prall D, Lakes RS. Properties of a chiral honeycomb with a Poisson's ratio of -1. International Journal of Mechanical Sciences, 1997,39(3):305-307
    [64] Wu WW, Tao Y, Xia Y, et al. Mechanical properties of hierarchical anti-tetrachiral metastructures. Extreme Mechanics Letters, 2017,16:18-32
    [65] Alderson A, Alderson KL, Attard D, et al. Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 2010,70(7):1042-1048
    [66] Grima JN, Gatt R, Farrugia PS. On the properties of auxetic meta-tetrachiral structures. Physica Status Solidi, 2010,245(3):511-520
    [67] Ha CS, Plesha ME, Lakes RS. Chiral three-dimensional lattices with tunable Poisson's ratio. Smart Materials & Structures, 2016,25(5):054005
    [68] Wu WW, Hu WX, Qian GA, et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & Design, 2019,180:107950
    [69] Attard D, Grima JN. A three-dimensional rotating rigid units network exhibiting negative Poisson's ratios. Physica Status Solidi $($B$)$, 2012,249(7):1330-1338
    [70] Dagdelen J, Montoya J, De Jong M, et al. Computational prediction of new auxetic materials. Nature Communications, 2017,8(1):1-8
    [71] Jin E, Lee IS, Kim D, et al. Metal-organic framework based on hinged cube tessellation as transformable mechanical metamaterial. Science Advances, 2019, 5(5):eaav4119.
    [72] Lu DJ, Li YF, Seifi H, et al. Designing novel structures with hierarchically synchronized deformations. Extreme Mechanics Letters, 2017,19:1-6
    [73] Rafsanjani A, Pasini D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mechanics Letters, 2016,9:291-296
    [74] Dudek KK, Gatt R, Mizzi L, et al. On the dynamics and control of mechanical properties of hierarchical rotating rigid unit auxetics. Scientific Reports, 2017,7:46529
    [75] Grima JN, Chetcuti E, Manicaro E, et al. On the auxetic properties of generic rotating rigid triangles. Proceedings of the Royal Society A$:$ Mathematical, Physical and Engineering Sciences, 2012,468(2139):810-830
    [76] Grima JN, Manicaro E, Attard D. Auxetic behavior from connected different-sized squares and rectangles. Proceedings of the Royal Society A$:$ Mathematical, Physical and Engineering Sciences, 2011,467(2126):439-458
    [77] Kim J, Shin D, Yoo DS, et al. Regularly configured structures with polygonal prisms for three-dimensional auxetic behavior. Proceedings of the Royal Society of London, 2017,473(2202):20160926
    [78] Lim TC. Metamaterials with Poisson's ratio sign toggling by means of microstructural duality. SN Applied Sciences, 2019,1(2):176
    [79] Huang J, Zhang QH, Scarpa F, et al. Shape memory polymer-based hybrid honeycomb structures with zero Poisson's ratio and variable stiffness. Composite Structures, 2017,179:437-443
    [80] Huang JL, Liu WY, Tanf Aimin. Effects of fine-scale features on the elastic properties of zero Poisson's ratio honeycombs. Materials Science and Engineering$:$ B, 2018,236:95-103
    [81] Xue YY, Gao PX, Zhou L, et al. An enhanced three-dimensional auxetic lattice structure with improved property. Materials, 2020,13(4):1008
    [82] Parsons EM. Lightweight cellular metal composites with zero and tunable thermal expansion enabled by ultrasonic additive manufacturing: Modeling, manufacturing, and testing. Composite Structures, 2019,223:110656
    [83] Yasuda H, Gopalarethinam B, Kunimine T, et al. Origami-based cellular structures with in situ transition between collapsible and load-bearing configurations. Advanced Engineering Materials, 2019,21(12):1900562
    [84] Chen ZY, Wu X, Xie YM, et al. Re-entrant auxetic lattices with enhanced stiffness: A numerical study. International Journal of Mechanical Sciences, 2020,178:105619
    [85] Fu MH, Liu FM, Hu LL. A novel category of 3D chiral material with negative Poisson's ratio. Composites Science and Technology, 2018,160:111-118
    [86] Zheng BB, Zhong RC, Chen X, et al. A novel metamaterial with tension-torsion coupling effect. Materials & Design, 2019,171:107700
    [87] Zhong RC, Fu MH, Chen X, et al. A novel three-dimensional mechanical metamaterial with compression-torsion properties. Composite Structures, 2019,226:111232
    [88] Ebrahimi H, Mousanezhad D, Nayeb-Hashemi H, et al. 3D cellular metamaterials with planar anti-chiral topology. Materials & Design, 2018,145:226-231
    [89] Duan SY, Xia L, Wen WB, et al. A novel design method for 3D positive and negative Poisson's ratio material based on tension-twist coupling effects. Composite Structures, 2020,236:111899
    [90] Duan SY, Wen WB, Fang DN. A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior. Journal of the Mechanics and Physics of Solids, 2018,121:23-46
    [91] Bendse MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics & Engineering, 1988,71(2):197-224
    [92] Sigmund O. A 99 line topology optimization code written in Matlab. Structural & Multidiplinary Optimization, 2001,21(2):120-7
    [93] Huang XD, Xie YM. Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elements Analysis and Design, 2007,43(14):1039-49
    [94] Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Composite Structure, 1993,49(5):885-96
    [95] Zheng YF, Da DC, Li H, et al. Robust topology optimization for multi-material structures under interval uncertainty. Applied Mathematical Modelling, 2020,78:627-47
    [96] Zheng YF, Xiao M, Gao L, et al. Robust topology optimization for periodic structures by combining sensitivity averaging with a semi-analytical method. International Journal for Numerical Methods in Engineering, 2019,117(5):475-97
    [97] Wu JL, Luo Z, Li H, et al. Level-set topology optimization for mechanical metamaterials under hybrid uncertainties. Computer Methods in Applied Mechanics & Engineering, 2017,319:414-41
    [98] Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004,194(1):363-93
    [99] Li H, Luo Z, Gao L, et al. Topology optimization for concurrent design of structures with multi-patch microstructures by level sets. Computer Methods in Appled Mechanics Engineering, 2018,331:536-561
    [100] Guo X, Zhang WS, Zhong WL. Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. Journal Applied Mechanics, 2014,81(8):081009
    [101] Zhang WS, Yuan J, Zhang J, et al. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Structural Multidisciplinary Optimization, 2016,53(6):1243-1260
    [102] Wang YJ, Wang ZP, Xia ZH, et al. Structural design optimization using isogeometric analysis: A comprehensive review. Computer Modeling Engineering and Sciences, 2018,117(3):455-507
    [103] Wang YJ, Liao ZY, Ye M, et al. An efficient isogeometric topology optimization using multilevel mesh, MGCG and local-update strategy. Advances in Engineering Software, 2020, ( 139):102733
    [104] Wang YJ, Xu H, Damiano P. Multiscale isogeometric topology optimization for lattice materials. Computer Methods in Applied Mechanics and Engineering, 2017,316:568-585
    [105] Sigmund O. Materials with prescribed constitutive parameters: An inverse homogenization problem. International Journal of Solids and Structures, 1994,31(17):2313-2329
    [106] Sigmund O. Tailoring materials with prescribed elastic properties. Mechanics of Materials, 1995,20(4):351-368
    [107] Zhang HK, Luo YJ, Kang Z. Bi-material microstructural design of chiral auxetic metamaterials using topology optimization. Composite Structures, 2018,195:232-248
    [108] Xia L, Xia Q, Huang XD, et al. Bi-directional evolutionary structural optimization on advanced structures and materials: A comprehensive review. Archives of Computational Methods in Engineering, 2018,25:437-478
    [109] Zhang GD, Khandelwal K. Computational design of finite strain auxetic metamaterials via topology optimization and nonlinear homogenization. Computer Methods in Applied Mechanics Engineering, 2019,356:490-527
    [110] Gao J, Xue HP, Gao L, et al. Topology optimization for auxetic metamaterials based on isogeometric analysis. Computer Methods in Applied Mechanics Engineering, 2019,352:211-36
    [111] Vogiatzis P, Chen SK, Wang X, et al. Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method. Computer-Aided Design, 2017,83:15-32
    [112] Schwerdtfeger J, Wein F, Leugering G, et al. Design of auxetic structures via mathematical optimization. Advanced Materials, 2011,23(22-23):2650-4
    [113] Andreassen E, Lazarov BS, Sigmund O. Design of manufacturable 3D extremal elastic microstructure. Mechanics of Materials, 2014,69(1):1-10
    [114] Clausen A, Wang FW, Jensen JS, et al. Topology optimized architectures with programmable Poisson's ratio over large deformations. Advanced Materials, 2015,27(37):5523-7
    [115] Dagdelen J, Montoya J, Jong MD, et al, Computational prediction of new auxetic materials. Nature Communiations, 2017,323
    [116] Gaillac R, Chibani S, Coudert FX. Speeding up discovery of auxetic zeolite frameworks by machine learning. Chemistry of Materials. 2020,32:2653-2663
    [117] 汪运鹏, 杨瑞鑫, 聂少军, 等. 基于深度学习技术的激波风洞智能测力系统研究. 力学学报, 2020,52(5):1304-1313

    (Wang Yunpeng, Yang Ruixin, Nie Shaojun, et al. Deep-learning-based intelligent force measurement system using in a shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1304-1313 (in Chinese))
    [118] Chen D, Skouras M, Zhu B, et al. Computational discovery of extremal microstructure families, Science Advances, 2018, 4(1):eaao7005.
    [119] Wilt JK, Yang C, Gu GX. Accelerating auxetic metamaterial design with deep learning. Advanced Engineering Materials, 2020,22(5):2070018
    [120] Liu TW, Sun SW, Liu H, et al. A predictive deep-learning approach for homogenization of auxetic kirigami metamaterials with randomly oriented cuts. Modern Physics Letters B, 2020,2150033
    [121] Mukhopadhyay T, Adhikari S. Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity. Mechanics of Materials, 2016,95:204-222
    [122] Boldrin L, Hummel S, Scarpa F, et al. Dynamic behavior of auxetic gradient composite hexagonal honeycombs. Composite Structures, 2016,149:114-124
    [123] Xiao DB, Dong ZC, Li Y, et al. Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis. Materials Science and Engineering A, 2019,758:163-171
    [124] Harkati E, Daoudi N, Bezazi A, et al. In-plane elasticity of a multi re-entrant auxetic honeycomb. Composite Structures, 2017,180:130-139
    [125] Zhang XC, AN LQ, Ding HM, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio. Journal of Sandwich Structures & Materials, 2015,17(1):26-55
    [126] Ruan D, Lu GX, Wang B, et al. In-plane dynamic crushing of honeycombs-a finite element study. International Journal of Impact Engineering, 2003,28(2):161-182
    [127] Hou XH, Deng ZC, Zhang K. Dynamic crushing strength analysis of auxetic honeycombs. Acta Mechanica Solida Sinica, 2016,29(5):490-501
    [128] Liu WY, Wang NL, Luo T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure. Materials & Design, 2016,100:84-91
    [129] Zhang JJ, LU GX, Duan R, et al. Tensile behavior of an auxetic structure: Analytical modeling and finite element analysis. International Journal of Mechanical Sciences, 2018,136:143-154
    [130] Zhang JJ, LU GX, Wang ZH, et al. Large deformation of an auxetic structure in tension: Experiments and finite element analysis. Composite Structures, 2018,184:92-101
    [131] Hu LL, Zhou MZ, Deng H. Dynamic crushing response of auxetic honeycombs under large deformation: Theoretical analysis and numerical simulation. Thin Walled Structures, 2018,131:373-384
    [132] Hu LL, You FF, Yu TX. Effect of cell-wall angle on the in-plane crushing behavior of hexagonal honeycombs. Materials & Design, 2013,46:511-523
    [133] Lee W, Jeong Y, Yoo J, et al. Effect of auxetic structures on crash behavior of cylindrical tube. Composite Structures, 2019,208:836-846
    [134] Dong ZC, Li Y, Zhao T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb. Materials & Design, 2019,182:108036
    [135] Xiao DB, Kang X, Li Y, et al. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression. Materials Science and Engineering: A, 2019,763:138151
    [136] Xiao DB, Chen XQ, Li Y, et al. The structure response of sandwich beams with metallic auxetic honeycomb cores under localized impulsive loading-experiments and finite element analysis. Materials & Design, 2019,176:107840
    [137] Li Y, Chen ZH, Xiao DB, et al. The dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading. International Journal of Impact Engineering, 2020,137:103442
    [138] 裴连政. 负泊松比夹芯板抗爆性能实验与仿真研究. [硕士论文]. 大连: 大连理工大学, 2016

    (Pei Lianzheng. Experimental and numerical simulation studies of auxetic-cored sandwich panel under air blast loading. [Master Thesis]. Dalian: Dalian University of Technology, 2016 (in Chinese))
    [139] Qi C, Remennikov A, Pei LZ, et al. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: Experimental tests and numerical simulations. Composite Structures, 2017,180:161-178
    [140] Reid SR, Peng C. Dynamic uniaxial crushing of wood. International Journal of Impact Engineering, 1997,19(5-6):531-570
    [141] Imbalzano G, Tran P, Ngo TD, et al. Three-dimensional modelling of auxetic sandwich panels for localized impact resistance. Journal of Sandwich Structures & Materials, 2017,19(3):291-316
    [142] Imbalzano G, Linforth S, Ngo TD, et al. Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Composite Structures, 2017,183:242-261
    [143] Lorato A, Innocenti P, Scarpa F, et al. The transverse elastic properties of chiral honeycombs. Composites Science & Technology, 2010,70(7):1057-1063
    [144] Spadoni A, Ruzzene M, Scarpa F. Global and local linear buckling behavior of a chiral cellular structure. Physica Status Solidi, 2005,242(3):695-709
    [145] Miller W, Smith CW, Scarpa F, et al. Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Composites Science and Technology, 2010,70(7):1049-1056
    [146] Airoldi A, Bettini P, Zazzarini M, et al. Failure and energy absorption of plastic and composite chiral honeycombs. Structures under Shock and Impact XII, 2012,126:101-114
    [147] Scarpa F, Blain S, Lew T, et al. Elastic buckling of hexagonal chiral cell honeycombs. Composites Part A$:$ Applied Science & Manufacturing, 2007,38(2):280-289
    [148] 项燕飞. 能量吸收材料与结构的评价指标. [硕士论文]. 宁波: 宁波大学, 2014

    (Xiang Yanfei. Key performance indicators (KPIs) of energy absorption of materials and structures. [Master Thesis]. Ningbo: Ningbo University, 2014 (in Chinese))
    [149] 安文姿. 车用负泊松比安全带织带乘员保护效能研究. [硕士论文]. 大连: 大连理工大学, 2013

    (An Wenzi. Study of the occupant crash protection performance of the negative Poisson's ratio seat belt webbing. [Master Thesis]. Dalian: Dalian University of Technology, 2013 (in Chinese))
    [150] 亓昌, 安文姿, 杨姝. 负泊松比安全带织带乘员碰撞保护性能的FE仿真. 汽车安全与节能学报, 2013,4(3):215-222

    (Qi Chang, An Wenzi, Yang Shu. FE simulation of the occupant crash protection performance of the negative Poisson's ratio seat belt webbing. Journal of Automotive Safety and Energy, 2013,4(3):215-222 (in Chinese))
    [151] 王崴崴. 新型负泊松比保险杠系统多学科优化设计. [硕士论文]. 南京: 南京航空航天大学, 2018

    (Wang Weiwei. Multi-disciplinary optimization of a novel negative Poisson's ratio bumper system. [Master Thesis]. Nangjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese))
    [152] Wang CY, Wang WW, Zhao WZ, et al. Structure design and multi-objective optimization of a novel NPR bumper system. Composites Part B$:$ Engineering, 2018,153:78-96
    [153] 王陶. 负泊松比结构力学特性研究及其在商用车耐撞性优化设计中的应用. [博士论文]. 南京: 南京理工大学, 2018

    (Wang Tao, Mechanical research of an auxetic cellular structure and its application in commercial vehicle crashworthiness optimization design. [PhD Thesis]. Nanjing: Nanjing University of Science & Technology, 2018 (in Chinese))
    [154] 张伟, 侯文彬, 胡平. 新型负泊松比多孔吸能盒平台区力学性能. 复合材料学报, 2015,32(2):534-541

    (Zhang Wei, Hou Wenbin, Hu Ping. Mechanical properties of new negative Poisson's ratio crush box with cellular structure in plateau stage. Acta Materiae Composite Sinica, 2015,32(2):534-541 (in Chinese))
    [155] 杨星, 于野, 张伟, 等. 基于三维多胞结构的汽车吸能盒优化设计. 大连理工大学学报, 2017,57(4):331-336

    (Yang Xing, Yu Ye, Zhang Wei, et al. Optimization design of automobile crash box based on 3D cellular structure. Journal of Dalian University of Technology, 2017,57(4):331-336 (in Chinese))
    [156] Zhang W, Ma ZD, Hu P. Mechanical properties of a cellular vehicle body structure with negative Poisson's ratio and enhanced strength. Journal of Reinforced Plastics & Composites, 2014,33(4):342-349
    [157] 周冠. 新型负泊松比结构关键技术研究及其在车身设计中的应用. [博士论文]. 湖南: 湖南大学, 2015

    (Zhou Guan. Study on key techniques of NPR structure and its application in vehicle body design. [PhD Thesis]. Hunan: Hunan University, 2015 (in Chinese))
    [158] 邹松春. 负泊松比结构车身零件耐撞性优化设计. [硕士论文]. 南京: 南京航空航天大学, 2019

    (Zou Songchun. Crashworthiness optimization design of vehicle body parts with negative Poisson's ratio structure. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese))
    [159] Ma ZD, Bian H, Sun C, et al. Functionally-graded NPR (Negative Poisson's Ratio) material for a blast-protective deflector// Proceedings of the 2010 NDIA Ground Vehicle Systems Engineering and Technology Symposium Modeling & Simulation, Testing and Validation Mini-Symposium, Dearborn, MI, USA, 17-19 August 2010
    [160] Liu YY, Ma ZD. Nonlinear analysis and design investigation of a negative Poisson's ratio material. ASME International Mechanical Engineering Congress and Exposition, 2007,43041:965-973
    [161] Zhou G, Ma ZD, Gu JC, et al. Design optimization of a NPR structure based on HAM optimization method. Structural & Multidiplinary Optimization, 2016,53(3):1-9
    [162] Zhou G, Ma ZD, Li GY, et al. Design optimization of a novel NPR crash box based on multi-objective genetic algorithm. Structural and Multidiplinary Optimization, 2016,54(3):673-684
    [163] Wang YL, Wang LM, Ma ZD, et al. Parametric analysis of a cylindrical negative Poisson's ratio structure. Smart Materials and Structures, 2016,25(3):035038.
    [164] 王源隆. 负泊松比结构汽车悬架缓冲块的力学性能研究与优化设计. [博士论文]. 南京: 南京理工大学, 2016

    (Wang Yuanlong. Mechanics research and optimal design of a vehicle suspension jounce bumper with Negative Poisson's Ratio structure. [PhD Thesis]. Nanjing: Nanjing University of Science & Technology, 2016 (in Chinese))
    [165] Wang YL, Zhao WZ, Zhou G, et al. Parametric design strategy of a novel cylindrical negative Poisson's ratio jounce bumper for ideal uniaxial compression load-displacement curve. Science China Technological Sciences, 2018,61(10):1611-1620
    [166] Wang YL, Wang LM, Ma ZD, et al. Finite element analysis of a jounce bumper with negative Poisson's ratio structure. Proceedings of the Institution of Mechanical Engineers, Part C$:$ Journal of Mechanical Engineering Science, 2017,231(23):4374-4387
    [167] Wang YL, Zhao WZ, Zhou G, et al. Optimization of an auxetic jounce bumper based on Gaussian process metamodel and series hybrid GA-SQP algorithm. Structural and Multidisciplinary Optimization, 2018,57(6):2515-2525
    [168] Wang YL, Zhao WZ, Zhou G, et al. Suspension mechanical performance and vehicle ride comfort applying a novel jounce bumper based on negative Poisson's ratio structure. Advances in Engineering Software, 2018,122:1-12
    [169] Wang YL, Zhao WZ, Ma ZD, et al. A negative Poisson's ratio suspension jounce bumper. Materials & Design, 2016,103:90-99
    [170] Wang DZ, Dong G, Zhang JH, et al. Car side structure crashworthiness in pole and moving deformable barrier side impacts. Tsinghua Science & Technology, 2006,11(6):725-730
    [171] Dong QZ, Yang JK. Crashworthiness research of vehicle with B-pillar filled with aluminum foam. Computer Simulation, 2014 ( 11):34
    [172] 董庆战. 有限元模拟泡沫铝及填充在轿车B柱中的侧面耐撞性研究. [硕士论文]. 湖南: 湖南大学, 2014

    (Dong Qingzhan. Finite element simulation of aluminum foam and crashworthiness research of vehicle with B-pillar filled with aluminum foam. [Master Thesis]. Hunan: Hunan University, 2014 (in Chinese))
    [173] 赵万忠, 赵宏宇, 王春燕. 基于负泊松比结构的汽车B柱结构耐撞性优化设计. 江苏大学学报(自然科学版), 2020,41(2):166-171

    (Zhao Wanzhong, Zhao Hongyu, Wang Chunyan. Crashworthiness optimization design of automobile B-pillar structure based on negative Poisson's ratio structure. Journal of Jiangsu University $($Natural Science Edition$)$, 2020,41(2):166-171 (in Chinese))
    [174] Ju J, Kim DM, Kim K. Flexible cellular solid spokes of a non-pneumatic tire. Composite Structures, 2012,94(8):2285-2295
    [175] Wu TY, Li MX, Zhu XL, et al. Research on non-pneumatic tire with gradient anti-tetrachiral structures. Mechanics of Advanced Materials and Structures, 2020: 1-9
    [176] Hutchinson J, Kaiser MJ, Lankarani HM. The head injury criterion (HIC) functional. Applied Mathematics & Computation, 1998,96(1):1-16
    [177] 周青, 夏勇, 聂冰冰, 等. 汽车碰撞安全与轻量化研发中的若干挑战性课题. 中国公路学报, 2019,32(7):1-14

    (Zhou Qing, Xia Yong, Nie Binging, et al. Challenging topics in research of vehicle crash safety and light weighting. China Journal of Highway and Transport, 2019,32(7):1-14 (in Chinese))
    [178] 杨姝, 江峰, 丁宏飞, 等. 手性蜂窝夹芯概念发动机罩行人头部保护性能仿真. 华南理工大学学报(自然科学版), 2019,47(12):38-42

    (Yang Shu, Jiang Feng, Ding Hongfei, et al. Pedestrian head protection performance simulation of chiral honeycomb sandwich conceptual engine hood. Journal of South China University of Technology $($Natural Science Edition$)$, 2019,47(12):38-42 (in Chinese))
  • 加载中
计量
  • 文章访问数:  3812
  • HTML全文浏览量:  915
  • PDF下载量:  1634
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-20
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回