[1] |
Euler L. De curvis elasticis, Leonhard Euler's Elastic Curves. Oldfather WA, Ellis CA, Brown DM. Belgium: The St Catherine Press, 1933
|
[2] |
Timoshenko S. History of Strength of Materials. New York/ Toronto/London: McGraw-Hill Book Company, 1953
|
[3] |
Timshenko SP, Gere JM. Theory of Elastic Stability. 2nd ed. New York: Dover Publications Inc, 2009
|
[4] |
Koiter WT. On the stability of elastic equilibrium. National Aeronautics and Space Administration, 1967
|
[5] |
Hutchinson JW, Koiter WT. Postbuckling theory. Appl. Mech. Rev, 1970,23(12):1353-1366
|
[6] |
Singer J, Arbocz J, Babcock CDJ. Buckling of imperfect stiffened cylindrical shells under axial compression. AIAA Journal, 1970,9(1):8
|
[7] |
Thompson JMT, Hunt GW. A General Theory of Elastic Stability. London: Wiley, 1973
|
[8] |
Arbocz J. The Effect of Initial Imperfections on Shell Stability. In: (Fung Y C and Sechler E E eds). Thin-Shell Structures, Theory, Experiment and Design. Prentice Hall: Englewood Cliffs N J, 1974: 205-245
|
[9] |
Sun BH. Buckling problems of sandwich shells. Delft University of Technology. Delft University of Technology, 1992. Report LR-690, pp 1-99
|
[10] |
Yeh KY, Sun BH, Rimrott FPJ. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach. Part I. Scientific Journal for Fundamentals and Applications of Engineering Mechanics, 1994,14(3-4):239-248
|
[11] |
Yeh KY, Sun BH, Rimrott FPJ. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach. Part II. Scientific Journal for Fundamentals and Applications of Engineering Mechanics, 1994,15(1):1-12
|
[12] |
Sun BH, Yeh KY, Rimrott FPJ. On the buckling of structures. Scientific Journal for Fundamentals and Applications of Engineering Mechanics, 1995,15(2):129-140
|
[13] |
Sun BH. Modified Koiter's buckling theory based on the generalized variational principles. CERECAM Report No.244, University of Cape Town, 1994
|
[14] |
Budiansky B. Theory of buckling and post-buckling behavior of elastic structures. Advances in Applied Mechanics, 1974,14
|
[15] |
Elishakoff I. Probabilistic resolution of the twentieth century conundrum in elastic stability. 2014,59:35-57
|
[16] |
徐凡, 汪婷, 杨易凡. 薄膜拉伸褶皱失稳力学进展. 力学季刊, 2020,41(2):207-220(Xu Fan, Wang Ting, Yang Yifan. Wrinkling of stretched films: A review. Chinese Quart. Mech, 2020,41(2):207-220 (in Chinese))
|
[17] |
Yang YF, Dai HH, Xu F. et al. Pattern transitions in a soft cylindrical shell. Physical Review Letters, 2018,120:215503
|
[18] |
Xu F, Fu C, Yang Y. Water affects morphogenesis of growing aquatic plant leaves. Physical Review Letters, 2020,124:038003
|
[19] |
曹进军, 张卉婷, 张亮 等. 对角受拉方膜褶皱变形幅值的理论预测及实验验证. 力学学报, 2019,51(5):1403-1410(Cao Jinjun, Zhang Huiting, Zhang Liang, et al. Theoretical prediction and experimental verification of wrinkle amplitude in a square membrane subjected to diagonal tension. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(5):1403-1410 (in Chinese))
|
[20] |
夏元明, 张威, 崔天宁 等. 金属多级类蜂窝的压溃行为研究. 力学学报, 2019,51(3):873-883(Xia Yuanming, Zhang Wei, Cui Tianning, et al. Investigation on crushing behavior of metal honeycome-like hierarchical structures. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):873-883 (in Chinese))
|
[21] |
Yan H, Yang F, Pan D. et al. Sterically controlled mechanochemistry under hydrostatic pressure. Nature, 2018,554(7693):505
|
[22] |
Yang W, Li ZM, Shi W. et al. Review on auxetic materials. Journal of Materials ence, 2004,39(10):3269-3279
|
[23] |
Alderson A, Alderson KL. Auxetic materials. Journal of Aerospace Engineering, 2007,221(4):565-575
|
[24] |
Zheng XY, Howon Lee, Weisgraber Todd H. et al. Ultralight, ultrastiff mechanical metamaterials. Science, 2014,344:6190
|
[25] |
Banerjee A, Bernoulli D, Zhang H. et al. Ultralarge elastic deformation of nanoscale diamond. Science, 2018,360(6386):300-302
|
[26] |
Liu B, Silverberg JL, Evans AA. et al. Topological kinematics of origami metamaterials. Nature Physics, 2018,14:811-815
|
[27] |
任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报, 2019,51(3):656-689(Ren Xin, Zhang Xiangyu, Xie Yimin. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):656-689 (in Chinese))
|
[28] |
Von Karman T, Tsien H S. The buckling of spherical shells by external pressure. Journal of the Aeronautical Sciences, 1939,7(2):43-50
|
[29] |
von Karman T, Tsien H S. The buckling of thin cylindrical shells under axial compression. Journal of the Aeronautical Sciences, 1941,8:303-312
|
[30] |
Tsien HS. A theory for the buckling of thin shells. Journal of the Aeronautical Sciences, 1942,9(10):373-384
|
[31] |
Koiter WT. On the stability of elastic equilibrium. National Aeronautics and Space Administration, 1967
|
[32] |
Tsien HS. Lower buckling load in the non-linear buckling theory for thin shells. Quarterly of Applied Mathematics, 1947,5(2):236-237
|
[33] |
Stein M. The effect on the buckling of perfect cylinders of prebuckling deformations and stresses induced by edge support. NASA TN D-1510, 1962: 217
|
[34] |
NASA. Buckling of thin-walled circular cylinders. NASA Space Vehicle Design Criteria, National Aeronautics and Space Administration, Washington DC, 1965. Technical Report No. NASA SP-8007
|
[35] |
Mark W, Hilburger. Developing the Next Generation Shell Buckling Design Factors and Technologies. American Institute of Aeronautics and Astronautics, 2007
|
[36] |
Gerasimidis S, Virot E, Hutchinson J W. et al. On establishing buckling knockdowns for imperfection-sensitive shell structures. Journal of Applied Mechanics, 2018,85(9):091010
|
[37] |
NASA. Buckling of thin-walled doubly curved shells. NASA Space Vehicle Design Criteria, National Aeronautics and Space Administration, Washington DC, 1969. Technical Report No. NASA SP-8032
|
[38] |
Seide P, Weingarten VI. On the buckling of circular cylindrical shells under pure bending. Journal of Applied Mechanics, 1961,28(1):112
|
[39] |
Hutchinson J. Axial buckling of pressurized imperfect cylindrical shells. AIAA Journal, 1965,3(8):1461-1466
|
[40] |
Babcock Jr C D. The influence of the testing machine on the buckling of cylindrical shells under axial compression. International Journal of Solids and Structures, 1967,3(5):809-817
|
[41] |
Riks E. The application of Newton's method to the problem of elastic stability. J Appl Mech, 1972,39(4):1060-1066
|
[42] |
Brush DO, Almroth BO. Buckling of Bars, Plates and Shells. New York: McGraw-Hill, 1975
|
[43] |
Arbocz J, Sechler EE. On the buckling of stiffened imperfect cylindrical shells. AIAA Journal, 1976,14(11):1611-1617
|
[44] |
Arbocz J. Past, present and future of shell stability analysis. Delft University of Technology. Zeitschrift für Flugwissenschaften und Weltraumforschung, 1981,5(6):335-348
|
[45] |
Arbocz J. Potier-Ferry M, Singer J, et al. Buckling and Post-Buckling. Berlin Heidelberg: Springer, 1987
|
[46] |
Singer J. Buckling Experiments: Experimental Methods in Buckling of Thin-walled Structures. New York: John Wiley & Sons Inc, 1998
|
[47] |
Singer J. Buckling experiments: Experimental methods in buckling of thin-walled structures. Applied Mechanics Reviews, 2002,56(1):B5
|
[48] |
Bushnell D. Shell buckling. http://shellbuckling.com/index.php. 2004
|
[49] |
Van Slooten RA, Soong TT. Buckling of a long, axially compressed, thin cylindrical shell with random initial imperfections. Journal of Applied Mechanics, 1972,39(4):634-635
|
[50] |
Narasimhan KY, Hoff NJ. Snapping of imperfect thin-walled circular cylindrical shells of finite length. Journal of Applied Mechanics, 1971,38(1):162-171
|
[51] |
Tennyson RC, Muggeridge DB, Caswell RD. New design criteria for predicting buckling of cylindrical shells under axial compression. Journal of Spacecraft & Rockets, 1971,8(10):1062-1067
|
[52] |
Almroth BO, Holmes AMC, Brush DO. An experimental study of the bucking of cylinders under axial compression. Experimental Mechanics, 1964,4(9):263-270
|
[53] |
周承倜. 薄壳弹塑性稳定性理论. 北京: 国防工业出版社, 1979(Zhou Chengti. Elastic Plastic Stability Theory of Thin Shells. Beijing: National Defense Industry Press, 1979 (in Chinese))
|
[54] |
Krasovsky V, Marchenko V, Schmidt R. Deformation and buckling of axially compressed cylindrical shells with local loads in numerical simulation and experiments. Thin-Walled Structures, 2011,49(5):576-580
|
[55] |
Haynie W, Hilburger M, Bogge M, et al. Validation of lower-bound estimates for compression-loaded cylindrical shells 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012
|
[56] |
Thompson JMT. Advances in shell buckling: Theory and experiments. International Journal of Bifurcation And Chaos, 2015,25(01):1530001
|
[57] |
Virot E, Kreilos T, Schneider TM. et al. Stability landscape of shell buckling. Phys. Rev. Lett., 2017: 119
|
[58] |
徐春杰, 张浩, 许帅 等. 易拉罐用铝基和铁基材料组织与力学性能对比研究. 铸造技术, 2018,314(5):14-17(Xu Chunjie, Zhang Hao, Xu Shuai, et al. Comparative on microstructure and mechanical properties of Al-based and iron-based materials for pop-top cans. Foundry Technology. 2018,314(5):14-17 (in Chinese))
|
[59] |
李魏梓, 宋昕宜, 杨凯 等. 易拉罐轴向受压失稳试验研究及有限元分析. 制造业自动化, 2014,15:83-85, 101(Li Weizi, Song Xinyi, Yang Kai, et al. The research and finite-element analysis of axial collapse of pop can. Manufacturing Automation. 2014,15:83-85, 101 (in Chinese))
|