EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

易拉罐在轴-侧-扭-内压联合作用下的屈曲地貌

宋广凯 孙博华

宋广凯, 孙博华. 易拉罐在轴-侧-扭-内压联合作用下的屈曲地貌[J]. 力学学报, 2021, 53(2): 448-466. doi: 10.6052/0459-1879-20-315
引用本文: 宋广凯, 孙博华. 易拉罐在轴-侧-扭-内压联合作用下的屈曲地貌[J]. 力学学报, 2021, 53(2): 448-466. doi: 10.6052/0459-1879-20-315
Song Guangkai, Sun Bohua. BUCKLING LANDSCAPE OF CAN UNDER THE COMBINDE ACTION OF AXIAL COMPRESSION-TORSION-LATERAL POKING-INTERNAL PRESSURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 448-466. doi: 10.6052/0459-1879-20-315
Citation: Song Guangkai, Sun Bohua. BUCKLING LANDSCAPE OF CAN UNDER THE COMBINDE ACTION OF AXIAL COMPRESSION-TORSION-LATERAL POKING-INTERNAL PRESSURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 448-466. doi: 10.6052/0459-1879-20-315

易拉罐在轴-侧-扭-内压联合作用下的屈曲地貌

doi: 10.6052/0459-1879-20-315
详细信息
    作者简介:

    1) 孙博华, 南非科学院院士, 主要研究方向: 连续介质力学、细薄智能结构力学、工程科学问题的标度律等. E-mail: sunbohua@xauat.edu.cn

    通讯作者:

    孙博华

  • 中图分类号: O342

BUCKLING LANDSCAPE OF CAN UNDER THE COMBINDE ACTION OF AXIAL COMPRESSION-TORSION-LATERAL POKING-INTERNAL PRESSURE

  • 摘要: 柱壳结构广泛应用于各个领域, 但由于其对初始缺陷较为敏感, 容易发生灾难性的屈曲失稳. 本文利用非线性有限元分析程序ABAQUS研究了柱壳屈曲问题, 并应用到了易拉罐的屈曲分析. 首先采用数值模拟的方法验证了Virot等学者的易拉罐屈曲试验结果, 然后为了获得屈曲的一些普适结果, 进一步考察了柱壳的屈曲表现. 对柱壳结构在不同载荷组合、不同几何参数作用下进行了细致分析. 为了讨论的直观, 本文绘制了柱壳结构在受到侧压-轴压载荷作用下外力-屈曲载荷-位移三维屈曲地貌图(称为landscape). 结果表明: 在侧压-轴压-扭转载荷作用下, 试件力-位移曲线出现了"cliff"(断崖)现象; 扭转载荷的施加不利于试件整体稳定性, 并造成了试件对初始缺陷的敏感性; 对于受到轴压-扭转载荷作用的试件, 本文定义承载力为零的平面为"sea level"(海平面)来区分试件破坏模式; 通过对不同边界条件的试件进行分析, 发现试件两端固定可以有效地增加结构的承载能力, 提高稳定性. 对柱壳结构内部充气可以大幅度提升结构的承载能力和稳定性, 减小对初始缺陷的敏感度.

     

  • [1] Euler L. De curvis elasticis, Leonhard Euler's Elastic Curves. Oldfather WA, Ellis CA, Brown DM. Belgium: The St Catherine Press, 1933
    [2] Timoshenko S. History of Strength of Materials. New York/ Toronto/London: McGraw-Hill Book Company, 1953
    [3] Timshenko SP, Gere JM. Theory of Elastic Stability. 2nd ed. New York: Dover Publications Inc, 2009
    [4] Koiter WT. On the stability of elastic equilibrium. National Aeronautics and Space Administration, 1967
    [5] Hutchinson JW, Koiter WT. Postbuckling theory. Appl. Mech. Rev, 1970,23(12):1353-1366
    [6] Singer J, Arbocz J, Babcock CDJ. Buckling of imperfect stiffened cylindrical shells under axial compression. AIAA Journal, 1970,9(1):8
    [7] Thompson JMT, Hunt GW. A General Theory of Elastic Stability. London: Wiley, 1973
    [8] Arbocz J. The Effect of Initial Imperfections on Shell Stability. In: (Fung Y C and Sechler E E eds). Thin-Shell Structures, Theory, Experiment and Design. Prentice Hall: Englewood Cliffs N J, 1974: 205-245
    [9] Sun BH. Buckling problems of sandwich shells. Delft University of Technology. Delft University of Technology, 1992. Report LR-690, pp 1-99
    [10] Yeh KY, Sun BH, Rimrott FPJ. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach. Part I. Scientific Journal for Fundamentals and Applications of Engineering Mechanics, 1994,14(3-4):239-248
    [11] Yeh KY, Sun BH, Rimrott FPJ. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach. Part II. Scientific Journal for Fundamentals and Applications of Engineering Mechanics, 1994,15(1):1-12
    [12] Sun BH, Yeh KY, Rimrott FPJ. On the buckling of structures. Scientific Journal for Fundamentals and Applications of Engineering Mechanics, 1995,15(2):129-140
    [13] Sun BH. Modified Koiter's buckling theory based on the generalized variational principles. CERECAM Report No.244, University of Cape Town, 1994
    [14] Budiansky B. Theory of buckling and post-buckling behavior of elastic structures. Advances in Applied Mechanics, 1974,14
    [15] Elishakoff I. Probabilistic resolution of the twentieth century conundrum in elastic stability. 2014,59:35-57
    [16] 徐凡, 汪婷, 杨易凡. 薄膜拉伸褶皱失稳力学进展. 力学季刊, 2020,41(2):207-220

    (Xu Fan, Wang Ting, Yang Yifan. Wrinkling of stretched films: A review. Chinese Quart. Mech, 2020,41(2):207-220 (in Chinese))
    [17] Yang YF, Dai HH, Xu F. et al. Pattern transitions in a soft cylindrical shell. Physical Review Letters, 2018,120:215503
    [18] Xu F, Fu C, Yang Y. Water affects morphogenesis of growing aquatic plant leaves. Physical Review Letters, 2020,124:038003
    [19] 曹进军, 张卉婷, 张亮 等. 对角受拉方膜褶皱变形幅值的理论预测及实验验证. 力学学报, 2019,51(5):1403-1410

    (Cao Jinjun, Zhang Huiting, Zhang Liang, et al. Theoretical prediction and experimental verification of wrinkle amplitude in a square membrane subjected to diagonal tension. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(5):1403-1410 (in Chinese))
    [20] 夏元明, 张威, 崔天宁 等. 金属多级类蜂窝的压溃行为研究. 力学学报, 2019,51(3):873-883

    (Xia Yuanming, Zhang Wei, Cui Tianning, et al. Investigation on crushing behavior of metal honeycome-like hierarchical structures. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):873-883 (in Chinese))
    [21] Yan H, Yang F, Pan D. et al. Sterically controlled mechanochemistry under hydrostatic pressure. Nature, 2018,554(7693):505
    [22] Yang W, Li ZM, Shi W. et al. Review on auxetic materials. Journal of Materials ence, 2004,39(10):3269-3279
    [23] Alderson A, Alderson KL. Auxetic materials. Journal of Aerospace Engineering, 2007,221(4):565-575
    [24] Zheng XY, Howon Lee, Weisgraber Todd H. et al. Ultralight, ultrastiff mechanical metamaterials. Science, 2014,344:6190
    [25] Banerjee A, Bernoulli D, Zhang H. et al. Ultralarge elastic deformation of nanoscale diamond. Science, 2018,360(6386):300-302
    [26] Liu B, Silverberg JL, Evans AA. et al. Topological kinematics of origami metamaterials. Nature Physics, 2018,14:811-815
    [27] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报, 2019,51(3):656-689

    (Ren Xin, Zhang Xiangyu, Xie Yimin. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):656-689 (in Chinese))
    [28] Von Karman T, Tsien H S. The buckling of spherical shells by external pressure. Journal of the Aeronautical Sciences, 1939,7(2):43-50
    [29] von Karman T, Tsien H S. The buckling of thin cylindrical shells under axial compression. Journal of the Aeronautical Sciences, 1941,8:303-312
    [30] Tsien HS. A theory for the buckling of thin shells. Journal of the Aeronautical Sciences, 1942,9(10):373-384
    [31] Koiter WT. On the stability of elastic equilibrium. National Aeronautics and Space Administration, 1967
    [32] Tsien HS. Lower buckling load in the non-linear buckling theory for thin shells. Quarterly of Applied Mathematics, 1947,5(2):236-237
    [33] Stein M. The effect on the buckling of perfect cylinders of prebuckling deformations and stresses induced by edge support. NASA TN D-1510, 1962: 217
    [34] NASA. Buckling of thin-walled circular cylinders. NASA Space Vehicle Design Criteria, National Aeronautics and Space Administration, Washington DC, 1965. Technical Report No. NASA SP-8007
    [35] Mark W, Hilburger. Developing the Next Generation Shell Buckling Design Factors and Technologies. American Institute of Aeronautics and Astronautics, 2007
    [36] Gerasimidis S, Virot E, Hutchinson J W. et al. On establishing buckling knockdowns for imperfection-sensitive shell structures. Journal of Applied Mechanics, 2018,85(9):091010
    [37] NASA. Buckling of thin-walled doubly curved shells. NASA Space Vehicle Design Criteria, National Aeronautics and Space Administration, Washington DC, 1969. Technical Report No. NASA SP-8032
    [38] Seide P, Weingarten VI. On the buckling of circular cylindrical shells under pure bending. Journal of Applied Mechanics, 1961,28(1):112
    [39] Hutchinson J. Axial buckling of pressurized imperfect cylindrical shells. AIAA Journal, 1965,3(8):1461-1466
    [40] Babcock Jr C D. The influence of the testing machine on the buckling of cylindrical shells under axial compression. International Journal of Solids and Structures, 1967,3(5):809-817
    [41] Riks E. The application of Newton's method to the problem of elastic stability. J Appl Mech, 1972,39(4):1060-1066
    [42] Brush DO, Almroth BO. Buckling of Bars, Plates and Shells. New York: McGraw-Hill, 1975
    [43] Arbocz J, Sechler EE. On the buckling of stiffened imperfect cylindrical shells. AIAA Journal, 1976,14(11):1611-1617
    [44] Arbocz J. Past, present and future of shell stability analysis. Delft University of Technology. Zeitschrift für Flugwissenschaften und Weltraumforschung, 1981,5(6):335-348
    [45] Arbocz J. Potier-Ferry M, Singer J, et al. Buckling and Post-Buckling. Berlin Heidelberg: Springer, 1987
    [46] Singer J. Buckling Experiments: Experimental Methods in Buckling of Thin-walled Structures. New York: John Wiley & Sons Inc, 1998
    [47] Singer J. Buckling experiments: Experimental methods in buckling of thin-walled structures. Applied Mechanics Reviews, 2002,56(1):B5
    [48] Bushnell D. Shell buckling. http://shellbuckling.com/index.php. 2004
    [49] Van Slooten RA, Soong TT. Buckling of a long, axially compressed, thin cylindrical shell with random initial imperfections. Journal of Applied Mechanics, 1972,39(4):634-635
    [50] Narasimhan KY, Hoff NJ. Snapping of imperfect thin-walled circular cylindrical shells of finite length. Journal of Applied Mechanics, 1971,38(1):162-171
    [51] Tennyson RC, Muggeridge DB, Caswell RD. New design criteria for predicting buckling of cylindrical shells under axial compression. Journal of Spacecraft & Rockets, 1971,8(10):1062-1067
    [52] Almroth BO, Holmes AMC, Brush DO. An experimental study of the bucking of cylinders under axial compression. Experimental Mechanics, 1964,4(9):263-270
    [53] 周承倜. 薄壳弹塑性稳定性理论. 北京: 国防工业出版社, 1979

    (Zhou Chengti. Elastic Plastic Stability Theory of Thin Shells. Beijing: National Defense Industry Press, 1979 (in Chinese))
    [54] Krasovsky V, Marchenko V, Schmidt R. Deformation and buckling of axially compressed cylindrical shells with local loads in numerical simulation and experiments. Thin-Walled Structures, 2011,49(5):576-580
    [55] Haynie W, Hilburger M, Bogge M, et al. Validation of lower-bound estimates for compression-loaded cylindrical shells 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012
    [56] Thompson JMT. Advances in shell buckling: Theory and experiments. International Journal of Bifurcation And Chaos, 2015,25(01):1530001
    [57] Virot E, Kreilos T, Schneider TM. et al. Stability landscape of shell buckling. Phys. Rev. Lett., 2017: 119
    [58] 徐春杰, 张浩, 许帅 等. 易拉罐用铝基和铁基材料组织与力学性能对比研究. 铸造技术, 2018,314(5):14-17

    (Xu Chunjie, Zhang Hao, Xu Shuai, et al. Comparative on microstructure and mechanical properties of Al-based and iron-based materials for pop-top cans. Foundry Technology. 2018,314(5):14-17 (in Chinese))
    [59] 李魏梓, 宋昕宜, 杨凯 等. 易拉罐轴向受压失稳试验研究及有限元分析. 制造业自动化, 2014,15:83-85, 101

    (Li Weizi, Song Xinyi, Yang Kai, et al. The research and finite-element analysis of axial collapse of pop can. Manufacturing Automation. 2014,15:83-85, 101 (in Chinese))
  • 加载中
计量
  • 文章访问数:  802
  • HTML全文浏览量:  123
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-07
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回