EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单框架控制力矩陀螺输出特性分析

黄志来 李新圆 金栋平

黄志来, 李新圆, 金栋平. 单框架控制力矩陀螺输出特性分析[J]. 力学学报, 2021, 53(2): 511-523. doi: 10.6052/0459-1879-20-306
引用本文: 黄志来, 李新圆, 金栋平. 单框架控制力矩陀螺输出特性分析[J]. 力学学报, 2021, 53(2): 511-523. doi: 10.6052/0459-1879-20-306
Huang Zhilai, Li Xinyuan, Jin Dongping. OUTPUT CHARACTERISTIC ANALYSIS OF SINGLE GIMBAL CONTROL MOMENT GYROSCOPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 511-523. doi: 10.6052/0459-1879-20-306
Citation: Huang Zhilai, Li Xinyuan, Jin Dongping. OUTPUT CHARACTERISTIC ANALYSIS OF SINGLE GIMBAL CONTROL MOMENT GYROSCOPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 511-523. doi: 10.6052/0459-1879-20-306

单框架控制力矩陀螺输出特性分析

doi: 10.6052/0459-1879-20-306
基金项目: 1) 装备预研基金(6140210010202);国家自然科学基金资助项目(11827801)
详细信息
    作者简介:

    2) 金栋平, 教授, 主要研究方向: 动力学与控制. E-mail: jindp@nuaa.edu.cn

    通讯作者:

    金栋平

  • 中图分类号: O313

OUTPUT CHARACTERISTIC ANALYSIS OF SINGLE GIMBAL CONTROL MOMENT GYROSCOPE

  • 摘要: 广泛用于航天领域的单框架控制力矩陀螺, 具有力矩放大效应的优点,其理论基础为有假设条件的力矩放大原理. 本文不局限于这些假设, 不限定工况,解析单框架控制力矩陀螺的输出特性. 考虑安装基座的运动,得到具有两维输入三维输出的单框架控制力矩陀螺力矩输出模型,提出将输出力矩分解为可调控与不可调控两部分. 为分析单框架控制力矩陀螺的输出特性,定义两个参数, 分别为输出输入力矩比和输出力矩利用率. 研究发现,单框架控制力矩陀螺不恒有力矩放大效应, 也不恒有高效的力矩利用率,两者与其状态密切相关. 最后,以含两个单框架控制力矩陀螺的航天器姿态机动任务为例,对非对角奇异鲁棒操纵控制和优化控制进行仿真,检验了单框架控制力矩陀螺输出特性对控制效果的影响. 同时,根据单框架控制力矩陀螺的三维输出特性, 借助一个单框架控制力矩陀螺的优化控制,实现了航天器的三轴姿态机动. 仿真结果显示, 在优化控制过程中,单框架控制力矩陀螺始终具有力矩放大效应和高效的力矩利用率.

     

  • [1] Tabarovskii AM. On the stability of motion of foucault gyroscopes with two degrees of freedom. Journal of Applied Mathematics & Mechanics, 1960,24(5):1206-1213
    [2] Toriumi FY, Angelico BA. Nonlinear controller design for tracking task of a control moment gyroscope actuator. IEEE/ASME Transactions on Mechatronics, 2020,25(1):438-448
    [3] 王恩美, 邬树楠, 吴志刚. 在轨组装空间结构面向主动控制的动力学建模. 力学学报, 2020,52(3):805-817

    (Wang Enmei, Wu Shunan, Wu Zhigang. Active-control-oriented dynamic modelling for on-orbit assembly space structure. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(3):805-816 (in Chinese))
    [4] 罗操群, 孙加亮, 文浩 等. 多刚体系统分离策略及释放动力学研究. 力学学报, 2020,52(2):503-513

    (Luo Caoqun, Sun Jialiang, Wen Hao, et al. Research on separation strategy and deployment dynamics of a space multi-rigid-body system. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(2):503-513 (in Chinese))
    [5] Yoon H. Spacecraft attitude and power control using variable speed control moment gyros. [PhD Thesis]. Atlanta: Georgia Institute of Technology, 2004
    [6] Sasaki T, Shimomura T, Pullen S. et al. Attitude and vibration control with double-gimbal variable-speed control moment gyros. Acta Astronautica, 2018,152(11):740-751
    [7] Valk L, Berry A, Vallery H, Directional singularity escape and avoidance for single-gimbal control moment gyroscopes. Journal of Guidance Control and Dynamics, 2018,41(5):1095-1107
    [8] Sasaki T, Alcorn J, Schaub H. et al. Convex optimization for power tracking of double-gimbal variable-speed control moment gyroscopes. Journal of Spacecraft and Rockets, 2018,55(3):541-551
    [9] Zhao H, Liu F, Yao Y. Optimization design steering law for VSCMGs with the function of attitude control and energy storage. Aerospace Science and Technology, 2017,65(6):9-17
    [10] Sasaki T, Shimomura T, Schaub H. Robust attitude control using a double-gimbal variable-speed control moment gyroscope. Journal of Spacecraft and Rockets, 2018,55(5):1235-1247
    [11] Stevenson D, Schaub H. Nonlinear control analysis of a double-gimbal variable-speed control moment gyroscope. Journal of Guidance Control and Dynamics, 2012,35(3):787-793
    [12] Hu QL, Tan X. Dynamic near-optimal control allocation for spacecraft attitude control using a hybrid configuration of actuators. IEEE Transactions on Aerospace and Electronic Systems, 2020,56(2):1430-1443
    [13] Guo JT, Geng YH, Kong XR. Pyramid-type single-gimbal control moment gyro system singularity avoidance using gimbal reorientation. Journal of Guidance Control and Dynamics, 2020,43(6):1180-1189
    [14] Yoshikawa T. A Steering law for a roof type configuration of single gimbal control moment gyro system. IFAC Proceedings Volumes, 1975,8(1):361-369
    [15] Tang L, Xu SJ. Geometric analysis of singularity for single-gimbal control Moment gyro systems. Chinese Journal of Aeronautics, 2005,18(4):295-303
    [16] Kawajiri S, Matunaga S. Singularity avoidance/passage steering logic for a variable-speed double-gimbal control moment gyro based on inverse kinematics. Transactions of The Japan Society for Aeronautical and Space Sciences, Space Technology Japan, 2018,16(2):188-194
    [17] Margulies G, Aubrun JN. Geometric theory of single-gimbal control moment gyro system. Journal of the Astronnutical Sciences, 1978,26(2):159-191
    [18] Wie B. Singularity analysis and visualization for single-gimbal control moment gyro systems. Journal of Guidance Control and Dynamics, 2004,27(2):271-282
    [19] Kurokawa H. Constrained steering law of pyramid-type control moment gyros and ground tests. Journal of Guidance Control and Dynamics, 1997,20(3):445-449
    [20] Leeghim H, Lee CY, Jin J. et al. A singularity-free steering law of roof array of control moment gyros for agile spacecraft maneuver. International Journal of Control Automation and Systems, 2020,18(7):1679-1690
    [21] Guo YN, Wang PY, Ma GF. et al. Envelope oriented singularity robust steering law of control moment gyros for spacecraft attitude maneuver. Transactions of the Institute of Measurement and Control, 2019,41(4):954-962
    [22] Pechev AN. Feedback-based steering law for control moment gyros. Journal of Guidance Control and Dynamics, 2007,30(3):848-855
    [23] Meng T, Matunaga S. Modified singular-direction avoidance steering for control moment gyros. Journal of Guidance Control and Dynamics, 2012,34(6):1915-1920
    [24] Schaub H, Junkins JL. Singularity avoidance using null motion and variable-speed control moment gyros. Journal of Guidance Control and Dynamics, 2000,23(1):11-16
    [25] Kurokawa H. Survey of theory and steering laws of single-gimbal control moment gyros. Journal of Guidance Control and Dynamics, 2007,30(5):1331-1340
    [26] Hoelscher BR, Vadali SR. Optimal open-loop and feedback control using single gimbal control moment gyroscopes. Advances in the Astronautical Sciences, 1994,42(2):189-206
    [27] Biggs JD, Livornese G. Control of a thrust-vectoring cubeSat using a single variable-speed control moment gyroscope. Journal of Guidance Control and Dynamics, 2020,43(10):1865-1880
    [28] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13

    (Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(1):1-13 (in Chinese))
    [29] 胡权, 贾英宏, 徐世杰. 多体系统动力学Kane方法的改进. 力学学报, 2011,43(5):968-972

    (Hu Quan, Jia Yinghong, Xu Shijie. An improved Kane's method for multibody dynamics. Chinese Journal of Theoretical and Applied Mechanics. 2011,43(5):968-972 (in Chinese))
    [30] Lappas VJ, Steyn WH, Underwood CI. Torque amplification of control moment gyros. Electronics Letters, 2002,38(15):837-839
    [31] Alcorn J, Allard C, Schaub H. et al. Fully coupled reaction wheel static and dynamic imbalance for spacecraft jitter modeling. Journal of Guidance Control and Dynamics, 2018,41(6):1380-1388
    [32] Wie B. Singularity escape/avoidance steering logic for control moment gyro systems. Journal of Guidance Control & Dynamics, 2005,28(5):948-956
    [33] Yoon H, Tsiotras P. Singularity analysis of variable speed control moment gyros. Journal of Guidance Control and Dynamics, 2004,27(3):374-386
    [34] Wu PC, Wen H, Chen T. et al. Model predictive control of rigid spacecraft with two variable speed control moment gyroscopes. Applied Mathematics and Mechanics (English Edition), 2017,38(11):1551-1564
  • 加载中
计量
  • 文章访问数:  940
  • HTML全文浏览量:  72
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回