EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属材料中低加载速率下的动态韧脆转变及断裂韧性测量

李一磊 姚迪 乔红威 李锡华 张鲲 孙磊 闫晓 李朋洲

李一磊, 姚迪, 乔红威, 李锡华, 张鲲, 孙磊, 闫晓, 李朋洲. 金属材料中低加载速率下的动态韧脆转变及断裂韧性测量[J]. 力学学报, 2021, 53(2): 424-436. doi: 10.6052/0459-1879-20-304
引用本文: 李一磊, 姚迪, 乔红威, 李锡华, 张鲲, 孙磊, 闫晓, 李朋洲. 金属材料中低加载速率下的动态韧脆转变及断裂韧性测量[J]. 力学学报, 2021, 53(2): 424-436. doi: 10.6052/0459-1879-20-304
Li Yilei, Yao Di, Qiao Hongwei, Li Xihua, Zhang Kun, Sun Lei, Yan Xiao, Li Pengzhou. DYNAMIC DUCTILE-BRITTLE TRANSITION AND FRACTURE TOUGHNESS MEASUREMENT OF METAL UNDER INTERMEDIATE-LOW LOADING VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 424-436. doi: 10.6052/0459-1879-20-304
Citation: Li Yilei, Yao Di, Qiao Hongwei, Li Xihua, Zhang Kun, Sun Lei, Yan Xiao, Li Pengzhou. DYNAMIC DUCTILE-BRITTLE TRANSITION AND FRACTURE TOUGHNESS MEASUREMENT OF METAL UNDER INTERMEDIATE-LOW LOADING VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 424-436. doi: 10.6052/0459-1879-20-304

金属材料中低加载速率下的动态韧脆转变及断裂韧性测量

doi: 10.6052/0459-1879-20-304
基金项目: 1) 中核集团青年英才计划资助项目(K3010070019001)
详细信息
    作者简介:

    2) 李一磊, 副研究员, 主要研究方向: 冲击动力学. E-mail: liyileiliuhao@163.com

    通讯作者:

    李一磊

  • 中图分类号: O347.3

DYNAMIC DUCTILE-BRITTLE TRANSITION AND FRACTURE TOUGHNESS MEASUREMENT OF METAL UNDER INTERMEDIATE-LOW LOADING VELOCITIES

  • 摘要: 金属材料在冲击下的韧脆转变现象和动态断裂韧性的测量是金属材料冲击力学性能研究的重要组成部分.针对金属材料在冲击下的韧脆转变现象认识不足和韧性材料在较低加载率下动态$J$-$R$阻力曲线难以测量的现状,提出了采用高速材料试验机, 设计专用试验夹具,测量15MnTi钢和11MnNiMo钢在不同加载速率下的韧脆转变过程,以及裂尖约束对其动态韧脆转变速率变化的影响.在高速材料试验机上采用上夹具辊刹车,通过调节压缩杆长度改变试验中裂纹扩展量的试验方法,测量了15MnTi钢三点弯曲试样件在较低加载率下的动态断裂韧性.试验发现15MnTi钢CT试验件加载速率低于0.025 m/s时呈现出韧性断裂的特点,加载速率在0.1,$\sim$,0.5 m/s时为韧脆结合型断裂,加载速率高于0.5 m/s后进入脆性断裂区; 11MnNiMo钢CT试验件加载速率大于1.5 m/s后,分层断裂过程中出现先脆断后韧段的现象;发现15MnTi钢和11MnNiMo的动态韧脆转变速率受裂尖约束的影响非常明显,面内约束和面外约束的升高都会导致材料动态脆断速率出现明显降低;还发现三点弯曲试验中, 15MnTi钢在8788 MPa$\cdot$mm/s加载率内断裂韧性随加载率的提升呈现出缓慢下降的趋势.

     

  • [1] Mott NF. Fracture of metal: Theoretical consideration. Engineering, 1948,165:16-18
    [2] Radon JC, Turner CE. Fracture toughness measurements by instrumented impact test. Engineering Fracture Mechanics, 1969,1:411-428
    [3] Ireland DR. Critical review of instrumented impact testing//Proceedings International Conference on Dynamic Fracture Toughness, 1977: 47-62
    [4] Kabayashi AS, Seo KK. A dynamic analysis of modifier compact-tension specimen using homolite-100 and polycarbonate plates. Experimental Mechanics, 1980,20:73-79
    [5] 杨滨, 轩福贞. 基于夏比冲击吸收能量的断裂韧性估算方法比较. 压力容器, 2016,33:32-39
    [6] 潘建华, 陈学东, 韩豫. $-$196${^circ}$奥氏体不锈钢母材与焊缝的动态断裂韧性. 爆炸与冲击, 2013,33:381-386

    (Pan Jianhua, Chen Xuedong, Han Yu. Dynamic fracture toughness of S30408 austenitic stainless steel base and weld metals at $-$196${^circ}$. Explosion and Shock Waves. 2013,33:381-386 (in Chinese))
    [7] Sathyanarayanan S, Singh J, Moitra A. et al. Effect of loading rate and constraint on dynamic ductile fracture toughness of P91 steel. Proceedings of Fatigue, Durability and Fracture Mechanics, 2018: 185-201
    [8] Bohme W, Kalthoff JF. The behavior of notched bend specimens in impact testing. International Journal of Fracture, 1982,20:139-143
    [9] Kalthoff JF. On the measurement of dynamic fracture toughness-a review of recent work. International Journal of Fracture, 1985,27:227-298
    [10] 王琼皎, 郭伟国, 左红星 等. 超强钢18NiC250在不同加载速度下的断裂韧性. 爆炸与冲击, 2013,33:238-242

    (Wang Qiongjiao, Guo Weiguo, Zuo Hongxing, et al. Fracture toughness of ultra-strength steel 18NiC250 at different loading rate. Explosion and Shock Waves. 2013,33:238-242 (in Chinese))
    [11] 孟庆良, 夏源明. 弹塑性材料裂纹扩展的动态$J$阻力曲线实验研究简介. 机械强度, 2004,26:172-176

    (Meng Qingliang, Xia Yuanming. Brief introduction of experimental study on the dynamic $J$-resistance curve of crack growth of elastic-plastic material. Journal of Mechanical Strength. 2004,26:172-176 (in Chinese))
    [12] 许泽建, 李玉龙, 李娜 等. 加载速度对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响. 金属学报, 2006,42:965-970

    (Xu Zejian, Li Yulong, Li Na, et al. Effect of loading rate on mode I dynamic fracture toughness of high strength steels 40Cr and 30CrMnSiNi2A. Acta Metallurgica Sinica. 2006,42:965-970 (in Chinese))
    [13] 宫能平, 李贤. 45#钢动态断裂韧性测试的试验研究. 安徽理工大学学报(自然科学版), 2007,27:65-68

    (Gong Nengping, Li Xian. Experimental study of dynamic fracture toughness of 45# steel. Journal of Anhui University of Science and Technology (Natural Science). 2007,27:65-68 (in Chinese))
    [14] Chen R, Xia K, Dai F. et al. Determination of dynamic fracture parameters using a semicircular bend technique in split Hopkinson pressure bar testing. Engineering Fracture Mechanics, 2009,76:1268-1276
    [15] Guo CH, Jiang FC, Liu RT. et al. Size effect on the contact between fracture specimen and supports in Hopkinson bar loaded fracture test. International Journal of Fracture, 2011,169:77-84
    [16] Dai F, Chen R, Xia K. A semi-circular bend technique for determining dynamic fracture toughness. Experimental Mechanics, 2010,50:783-791
    [17] 崔新忠, 范亚夫, 纪伟 等. 用Hopkinson杆技术研究材料动态断裂韧性的进展. 兵器材料科学与工程, 2010,33:418-427

    (Cui Xinzhong, Fan Yafu, Ji Wei, et al. Progress in the research of dynamic fracture toughness based on Hopkinson bar technique. Ordnance Material Science and Engineering. 2010,33:418-427 (in Chinese))
    [18] 邹广平, 谌赫, 唱忠良. 一种基于SHTB的II型动态断裂实验技术. 力学学报, 2017,49:117-127

    (Zou Guangping, Chen He, Chang Zhongliang. A modified mode II dynamic fracture test technique based on SHTB. Chinese Journal of Theoretical and Applied Mechanics. 2017,49:117-127 (in Chinese))
    [19] Sih GC, Lober JF. Determination of stress intensity factors in halfplane containing several moving cracks. Applied Mathematics, 1969,27:193-213
    [20] 李玉龙, 刘元镛. 用裂纹张开位移计算三点弯曲试样的动态应力强度因子. 爆炸与冲击, 1993,13:249-256

    (Li Yulong, Liu Yuanyong. Calculation of DSIF of three point bending specimen using the method of DCOD. Explosion and Shock Waves. 1993,13:249-256 (in Chinese))
    [21] Popelar CH, Anderson CE, Nagy A. An experimental method for determining dynamic fracture toughness. Experimental Mechanics, 2000,40:401-407
    [22] Weibrod G, Rittel D. A method for dynamic fracture toughness determination using short beams. International Journal of Fracture, 2000,104:89-103
    [23] 钟卫洲, 罗景润. 冲击载荷下三点弯曲试样的有限元分析. 环境技术, 2004,22:7-9

    (Zhong Weizhou, Luo Jingrun. Finite element analysis on three-point bending sample loaded by impact loading. Environmental Technology. 2004,22:7-9 (in Chinese))
    [24] 李玉龙, 刘元镛. 三点弯曲试样动态冲击特性的有限元分析. 计算力学学报, 1995,12:100-115

    (Li Yulong, Liu Yuanyong. Dynamic behavior of three point bending specimen under impact loading by using finite element method. Chinese Journal of Computational Mechanics. 1995,12:100-115 (in Chinese))
    [25] Dally JW, Barker DB. Dynamic measurements of initiation toughness at high loading rates. Experimental Mechanics, 1988,28:298-903
    [26] Sih GC, Ravear RS, Embley GT. Impact response of a finite crack in plane extension. International Journal of Solid and Structure, 1972,8:977-993
    [27] Kishimoto K, Aoki S, Sakata M. Simple formula for dynamic stress intensity factor of pre-crack charpy specimen. Engineering Fracture Mechanics, 1980,2:501-507
    [28] Schindler HJ. Estimation of the dynamic J-R curve from a single impact bending test//Mechanisms and Mechanics of Damage and Failure of European Conference On Fracture-11, France, vol.3. UK: EMAS, 1996: 2007-12
    [29] Sathyanarayanan S, Sasikala G, Ray SK. Evaluation of dynamic fracture toughness of cold worked 9Cr-1Mo steel. International Journal of Pressure Vessels and Piping, 2004,81:19-425
    [30] Sreenivasan PR, Shastry CG, Mathew MD. et al. Dynamic fracture toughness and Charpy transition properties of a sevice-exposed 2.25Cr-1Mo reheater header pipe. Journal of Engineering Materials and Technology, 2003,125:227-233
    [31] Magudeeswaran G, Balasubramanian V. Dynamic fracture toughness behavior of armor-grade Q&T steel weldments: Effect of weld metal composition and microstructure. Metal and Materials International, 2009,15:1017-1026
    [32] Ruland DL, Wang YY, Wilkoski G. et al. Characterizing dynamic fracture toughness of linepipe steel using the press-notch drop-weight-tear test specimen. Engineering Fracture Mechanics, 2004,71:2533-2549
    [33] 姜风春, 刘瑞堂, 刘殿奎. 船用921A钢动态断裂韧性测试研究. 实验力学, 1990,14:96-101

    (Jiang Chunfeng, Liu Ruitang, Liu Diankui. Study of dynamic fracture toughness measurement of 921A shipbuilding steel. Journal of Experimental Mechanics. 1990,14:96-101 (in Chinese))
    [34] Nakamura T, Shih CF, Freund LB. Elastic-Plastic analysis of a dynamically loaded circumferentially notched round bar. Engineering Fracture Mechanics, 1985,22:437-452
    [35] 张晓欣, 刘瑞堂. 某船用钢动态弹塑性断裂韧性的试验测试. 实验力学, 2002,17:153-159

    (Zhang Xiaoxin, Liu Ruitang. An experimental measurement for the dynamic elastic-plastic fracture toughness of ship-building steel. Journal of Experimental Mechanics. 2002,17:153-159 (in Chinese))
    [36] Rethore J, Gravouil A, Combescure A. An energy-conserving scheme for dynamic crack growth using the extended finite element method. Numerical Methods in Engineering, 2005(63):631-659
    [37] Lautridou JC, Pineau A. Crack initiation and stable crack growth resistance in a 508 steels in relation to inclusion distribution. Engineering Fracture Mechanics, 1981(15):55-71
    [38] Xu ZJ, Li YL, Huang FL. Application of split Hopkinson tension bar technique to the study of dynamic fracture properties of materials. Acta Mechanica Sinica, 2012,28:424-431
    [39] Xu ZJ, Li YL. Dynamic fracture toughness of high strength metals under impact loading: increase or decrease. Acta Mechanica Sinica, 2011,27:559-566
    [40] 孔祥伟, 李绪清, 兰亮云 等. Q390钢韧脆转变区冲击吸收功的类主曲线模型. 东北大学学报(自然科学版), 2018,39:663-667

    (Kong Xiangwei, Li Xuqing, Lan Liangyun, et al. Impact-energy principle resembling master curve model of Q390 steel in transition temperature region. Journal of Northeastern University (Natural Science). 2018,39:663-667 (in Chinese))
    [41] Chao YJ, Ward JD, Sands RG. Charpy impact energy facture toughness and ductile-brittle transition temperature of dual-phase 590 steel. Materials & Design, 2007,28:551-557
    [42] 史伟, 赵江涛, 王顺花 等. 12Cr2Mo1R钢的韧脆转变机理. 金属热处理, 2015,40:110-113

    (Shi Wei, Zhao Jiangtao, Wang Shunhua, et al. Toughness-brittle transition mechanism of 12Cr2Mo1R steel. Heat Treatment of Metals. 2015,40:110-113 (in Chinese))
    [43] 王元清, 林云, 张延年 等. 高强度钢材Q460C断裂韧性低温试验. 吉林大学学报(工学版), 2012,42:639-644

    (Wang Yuanqing, Lin Yun, Zhang Yannian, et al. Test on the fracture toughness of high-strength steel Q460C at low temperature. Journal of Jilin University (Engineering and Technology Edition). 2012,42:639-644 (in Chinese))
    [44] Chatterjee A, Chakrabarti D, Moitra A. et al. Effect of deformation temperature on the ductile-brittle transition behavior of a modified 9Cr-1Mo steel. Materials Science and Engineering A, 2015,630:58-70
    [45] 钟群鹏, 周煜, 张峥. 裂纹学. 北京: 高等教育出版社, 2014: 27

    (Zhong Qunpeng, Zhou Yu, Zhang Zheng. Crack. Beijing: Higher Education Press, 2014: 27(in Chinese))
    [46] Shlyannikov VN, Boychenko NV, Tartaygasheva AM. In-plane and out-of-plane crack-tip constraint effects under biaxial nonlinear deformation. Engineering Fracture Mechanics, 2011,78:1771-1783
    [47] Shlyannikov VN, Boychenko NV, Tumanov AV. The elastic and plastic constraint parameters for three-dimensional problem. Engineering Fracture Mechanics, 2014,127:83-96
    [48] Zhao J, Guo W, She C. The in-plane and out-of-plane stress constraint factors and K-T-T$_{Z}$ description of stress field near the border of a semi-elliptical surface crack. International Journal Fatigue, 2007,29:435-443
    [49] Huang XL, Liu YH, Huang XB. New constraint parameters based on crack tip plastic zone: The constraint parameters based on crack tip plastic zone: Theoretical derivations and effectiveness verification. International Journal of Solids and Structures, 2020,190:129-147
    [50] Bao C, Cai LX, He GW. et al. Normalization method for evaluating J-resistance curves of small-sized CIET specimen and crack front constraints. International Journal of Solids and Structures, 2016, 94-54:60-75
  • 加载中
计量
  • 文章访问数:  1182
  • HTML全文浏览量:  298
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回