[1] |
Dehnhardt G, Mauck B, Hanke W, et al. Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science, 2001,293(5527):102-104
|
[2] |
Wieskotten S, Dehnhardt G, Mauck B. et al. Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). Journal of Experimental Biology, 2010,213(13):2194-2200
|
[3] |
Wieskotten S, Dehnhardt G, Mauck B. et al. The impact of glide phases on the trackability of hydrodynamic trails in harbour seals (Phoca vitulina). Journal of Experimental Biology, 2010,213(21):3734-3740
|
[4] |
Dehnhardt G, Mauck B, Bleckmann H. Seal whiskers detect water movements. Nature, 1998,394(6690):235-236
|
[5] |
Schulte-Pelkum N, Wieskotten S, Hanke W. et al. Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). Journal of Experimental Biology, 2007,210(5):781-787
|
[6] |
Dehnhardt G, Kaminski A. Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. Journal of Experimental Biology, 1995,198(11):2317-2323
|
[7] |
李文. 海豹"胡须技术"或将成潜艇"杀手". 中国国防报, 2018-08-21(004)(Li Wen. Seal whisker technology may become a submarine killer. China National Defense Daily, 2018-08-21(004)(in Chinese))
|
[8] |
Hanke W, Wieskotten S, Niesterok B. et al. Hydrodynamic perception in pinnipeds. Nature-Inspired Fluid Mechanics, 2012: 255-270
|
[9] |
Murphy C T, Eberhardt W C, Calhoun B H. et al. Effect of angle on flow-induced vibrations of pinniped vibrissae. Plos One, 2013,8(7):e69872
|
[10] |
Hanke W, Witte M, Miersch L. et al. Harbor seal vibrissa morphology suppresses vortex-induced vibrations. Journal of Experimental Biology, 2010,213(15):2665-2672
|
[11] |
Witte M, Hanke W, Wieskotten S. et al. On the wake flow dynamics behind harbor seal vibrissae-a fluid mechanical explanation for an extraordinary capability. Nature-Inspired Fluid Mechanics, 2012: 271-289
|
[12] |
陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响. 力学学报, 2019,51(2):432-440(Chen Weilin, Ji Chunning, Xu Dong. Effects of the added cylinders with different control angles on the vortex-induced vibrations of a circular cylinder. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(2):432-440(in Chinese))
|
[13] |
刘俊, 高福平. 近壁面柱体涡激振动的迟滞效应. 力学学报, 2019,51(6):1630-1640(Liu Jun, Gao Fuping, Hysteresis in vortex-induced vibrations of a near-wall cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1630-1640 (in Chinese))
|
[14] |
杨明, 刘巨保, 岳欠杯 等. 涡激诱导并列双圆柱碰撞数值模拟研究. 力学学报, 2019,51(6):1785-1796(Yang Ming, Liu jubao, Yue Qianbei, et al. Numerical simulation on the vortex-induced collision of two side-by-side cylinders. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(6):1785-1796 (in Chinese))
|
[15] |
Beem H, Hildner M, Triantafyllou M. Calibration and validation of a harbor seal whisker-inspired flow sensor. Smart Materials and Structures, 2012,22(1):014012
|
[16] |
Hans H, Miao J, Triantafyllou M. Characterization of von Kármán street with seal whisker-like sensor//Conference of Sensors, IEEE, 2012: 1-4
|
[17] |
Eberhardt WC, Wakefield BF, Murphy CT. et al. Development of an artificial sensor for hydrodynamic detection inspired by a seal's whisker array. Bioinspiration & Biomimetics, 2016,11(5):056011
|
[18] |
Beem HR, Triantafyllou MS. Wake-induced `slaloming' response explains exquisite sensitivity of seal whisker-like sensors. Journal of Fluid Mechanics, 2015,783:306-322
|
[19] |
Morrison HE, Brede M, Dehnhardt G. et al. Simulating the flow and trail following capabilities of harbour seal vibrissae with the Lattice Boltzmann Method. Journal of Computational Science, 2016,17:394-402
|
[20] |
Hans H, Miao J, Weymouth G, et al. Whisker-like geometries and their force reduction properties//Oceans-Bergen, MTS/IEEE, 2013: 1-7
|
[21] |
Wang S, Liu Y. Wake dynamics behind a seal-vibrissa-shaped cylinder: a comparative study by time-resolved particle velocimetry measurements. Experiments in Fluids, 2016,57(3):32
|
[22] |
王少飞. 海豹胡须柱状结构的仿生涡激振动流动控制机制实验研究. [博士论文]. 上海: 上海交通大学, 2017(Wang Shaofei. Bionic fluid control of vortex-induced vibration inspired by the seal-vibrissa-shaped-cylinder. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2017(in Chinese))
|
[23] |
Ji C, Munjiza A, Williams JJR. A novel iterative direct-forcing immersed boundary method and its finite volume applications. Journal of Computational Physics, 2012,231(4):1797-1821
|
[24] |
Chen W, Ji C, Xu W. et al. Response and wake patterns of two side-by-side elastically supported circular cylinders in uniform laminar cross-flow. Journal of Fluids and Structures, 2015,55:218-236
|
[25] |
Rinehart A, Shyam V, Zhang W. Characterization of seal whisker morphology: implications for whisker-inspired flow control applications. Bioinspiration & Biomimetics, 2017,12(6):066005
|
[26] |
Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics, 1995,285:69-94
|
[27] |
Williamson CHK. Three-dimensional wake transition. Advances in Turbulence VI, 1996: 399-402
|
[28] |
Jiang H, Cheng L, Draper S. et al. Three-dimensional direct numerical simulation of wake transitions of a circular cylinder. Journal of Fluid Mechanics, 2016,801:353-391
|
[29] |
Leontini JS, Jacono DL, Thompson MC. et al. Stability analysis of the elliptic cylinder wake. Journal of Fluid Mechanics, 2015: 302-321
|
[30] |
Williamson CHK, Roshko A. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 1988,2(4):355-381
|
[31] |
Morse TL, Williamson CHK. Prediction of vortex-induced vibration response by employing controlled motion. Journal of Fluid Mechanics, 2009,634:5-39.
|
[32] |
Singh SP, Mittal S. Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes. Journal of Fluids and Structures, 2005,20(8):1085-1104
|
[33] |
Du L, Jing X, Sun X. Modes of vortex formation and transition to three-dimensionality in the wake of a freely vibrating cylinder. Journal of Fluids and Structures, 2014,49:554-573
|
[34] |
Gerrard JH. The mechanics of the formation region of vortices behind bluff bodies. Journal of Fluid Mechanics, 1966,25(2):401-413
|
[35] |
Jones A, Marshall CD. Does vibrissal innervation patterns and investment predict hydrodynamic trail following behavior of harbor seals (Phoca vitulina)? The Anatomical Record, 2019,302(10):1837-1845
|