EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低雷诺数沟槽表面湍流/非湍流界面特性的实验研究

李思成 吴迪 崔光耀 王晋军

李思成, 吴迪, 崔光耀, 王晋军. 低雷诺数沟槽表面湍流/非湍流界面特性的实验研究[J]. 力学学报, 2020, 52(6): 1632-1644. doi: 10.6052/0459-1879-20-211
引用本文: 李思成, 吴迪, 崔光耀, 王晋军. 低雷诺数沟槽表面湍流/非湍流界面特性的实验研究[J]. 力学学报, 2020, 52(6): 1632-1644. doi: 10.6052/0459-1879-20-211
Li Sicheng, Wu Di, Cui Guangyao, Wang Jinjun. EXPERIMENTAL STUDY ON PROPERTIES OF TURBULENT/NON-TURBULENT INTERFACE OVER RIBLETS SURFACES AT LOW REYNOLDS NUMBERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1632-1644. doi: 10.6052/0459-1879-20-211
Citation: Li Sicheng, Wu Di, Cui Guangyao, Wang Jinjun. EXPERIMENTAL STUDY ON PROPERTIES OF TURBULENT/NON-TURBULENT INTERFACE OVER RIBLETS SURFACES AT LOW REYNOLDS NUMBERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1632-1644. doi: 10.6052/0459-1879-20-211

低雷诺数沟槽表面湍流/非湍流界面特性的实验研究

doi: 10.6052/0459-1879-20-211
基金项目: 1) 国家自然科学基金资助项目(91852206);国家自然科学基金资助项目(11721202)
详细信息
    作者简介:

    2) 王晋军, 教授, 主要研究方向: 湍流拟序结构、流动控制、飞行器空气动力学等. E-mail: jjwang@buaa.edu.cn

    通讯作者:

    王晋军

  • 中图分类号: O357.5

EXPERIMENTAL STUDY ON PROPERTIES OF TURBULENT/NON-TURBULENT INTERFACE OVER RIBLETS SURFACES AT LOW REYNOLDS NUMBERS

  • 摘要: 湍流/非湍流界面是流动中湍流和无旋流的边界,其相关研究在加深对湍流与无旋流之间的物质、动量和能量交换的理解有重要意义.本文采用时间解析的二维粒子图像测速技术,分别对零压梯度光滑、顺流向锯齿形沟槽表面平板在不同雷诺数下对湍流/非湍流界面的几何特征及动力学特性进行了实验研究.实验雷诺数为$Re_{\tau } =400\sim1000$.本文采用了湍动能准则对湍流/非湍流界面进行了识别,并分析界面高度分布、分形特征及界面附近的条件平均速度和涡量.结果表明在不同雷诺数下, 无论是光滑壁面还是沟槽壁面,界面平均高度在0.8 $\sim$ 0.9$\delta_{99} $附近. 对于沟槽壁面而言,减阻时对应的界面高度的概率密度分布与光滑壁面基本一致, 均遵循正态分布,而当阻力增大时, 界面高度分布偏离正态分布出现正的偏度. 在本实验情况下,界面分形维度、跨界面速度跳变均会随着雷诺数增大而增大. 此外,不同壁面情况下无量纲条件平均涡量在界面附近的分布相近,而界面附近无量纲速度梯度最大值近似为常数.

     

  • [1] De Silva CM, Philip J, Chauhan K, et al. Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys Rev Lett, 2013,111:044501
    [2] Chauhan K, Philip J, de Silva CM, et al. The turbulent/non-turbulent interface and entrainment in a boundary layer. Journal of Fluid Mechanics, 2014,742:1-33
    [3] Borrell G, Jiménez J. Properties of the turbulent/non-turbulent interface in boundary layers. Journal of Fluid Mechanics, 2016,801:554-596
    [4] Wu D, Wang JJ, Cui GY, et al. Effects of surface shapes on properties of turbulent/non-turbulent interface in turbulent boundary layers. Sci China Tech Sci, 2020,63:214-222
    [5] Bisset DK, Hunt JCR, Rogers MM. The turbulent/non-turbulent interface bounding a far wake. Journal of Fluid Mechanics, 2002,451:383-410
    [6] Westerweel J, Fukushima C, Pedersen JM, et al. Mechanics of the turbulent-nonturbulent interface of a jet. Phys Rev Lett, 2005,95:174501
    [7] Chauhan K, Philip J, Marusic I. Scaling of the turbulent/non-turbulent interface in boundary layers. Journal of Fluid Mechanics, 2014,751:298-328
    [8] Corrsin S, Kistler AL. Free-stream boundaries of turbulent flows. Technical Report. Archive & Image Library, 1954
    [9] 张爽, 时钟. 稳定分层流密度界面处湍流混合与分形结构. 力学学报, 2015,47(4):547-556
    [9] ( Zhang Shuang, John Z. Shi. Turbulent mixing and fractal structure at a density interface in a stably stratified fluid. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(4):547-556 (in Chinese))
    [10] Walsh MJ. Riblets as a viscous drag reduction technique. AIAA Journal, 1983,21(4):485-486
    [11] Bacher E, Smith C. A combined visualization-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modifications. AIAA Paper 85-0546, 1985
    [12] 王晋军. 沟槽面湍流减阻研究综述. 北京航空航天大学学报, 1998(1):31-34
    [12] ( Wang Jinjun. Review and prospects in turbulent drag reduction over riblets surface. Journal of Beijing University of Aeronautics and Astronautics, 1998(1):31-34 (in Chinese))
    [13] 王晋军, 兰世隆, 苗福友. 沟槽面湍流边界层减阻特性研究. 中国造船, 2001,42(4):1-5
    [13] ( Wang Jinjun, Lan Shilong, Miao Fuyou. Drag-reduction characteristics of turbulent boundary layer flow over riblets surfaces. Shipbuilding of China, 2001,42(4):1-5 (in Chinese))
    [14] 王鑫, 李山, 唐湛棋 等. 沟槽对湍流边界层中展向涡影响的实验研究. 实验流体力学, 2018,32(1):55-63
    [14] ( Wan Xin, Li Shan, Tang Zhanqi, et al. An experimental study on riblet-induced spanwise vortices in turbulent boundary layers. Journal of Experiments in Fluid Mechanics, 2018,32(1):55-63(in Chinese))
    [15] 王松岭, 刘顺超, 戎瑞 等. 沟槽张角对流体减阻机理的数值模拟研究. 水动力学研究与进展(A辑), 2018,33(3):391-397
    [15] ( Wang Songling, Liu Shunchao, Rong Rui, et al. Numerical simulation research of groove angle on the mechanism of flow drag reduction. Chinese Journal of Hydrodynamics (A), 2018,33(3):391-397 (in Chinese))
    [16] Li WP, Liu H. Two-point statistics of coherent structures in turbulent flow over riblet-mounted surfaces. Acta Mechanica Sinica, 2019,35(3):457-471
    [17] 冯家兴, 胡海豹, 卢丙举 等. 超疏水沟槽表面通气减阻实验研究. 力学学报, 2020,52(1):24-30
    [17] ( Feng Jiaxing, Hu Haibao, Lu Bingju, et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):24-30 (in Chinese))
    [18] Bechert DW, Bruse M, Hage W. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 1997,338:59-87
    [19] 杨绍琼, 崔宏昭, 姜楠. 纵向沟槽壁面湍流边界层内类开尔文-亥姆霍兹涡结构的流动显示. 力学学报, 2015,47(3):529-533
    [19] ( Yang Shaoqiong, Choi Kwing-So, Jiang Nan. Flow visualizations on kelvin-helmholtz-like roller structures in turbulent boundary layer over riblets. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):529-533 (in Chinese))
    [20] 袁一平, 杨华, 石亚丽 等. 风力机专用翼型表面微沟槽减阻特性研究. 工程热物理学报, 2018,39(6):1258-1266
    [20] ( Yuan Yiping, Yang Hua, Shi Yali, et al. Study on drag reduction characteristics of airfoil for wing turbine with microgrooves on surface. Journal of Engineering Thermophysics, 2018,39(6):1258-1266 (in Chinese))
    [21] Koeltzsch K, Dinkelacker A, Grundmann R. Flow over convergent and divergent wall riblets. Experiments in Fluids, 2002,33(2):346-350
    [22] 崔光耀, 潘翀, 高琪 等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报, 2017,49(6):1201-1212
    [22] ( Cui Guangyao, Pan Chong, Gao Qi, et al. Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1201-1212 (in Chinese))
    [23] Kevin K, Monty J, Bai H, et al. Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern. Journal of Fluid Mechanics, 2017,813:412-435
    [24] Champagnat F, Plyer A, Le Besnerais G, et al. Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp Fluids, 2011,50:1169-1182
    [25] Pan C, Xue D, Xu Y, et al. Evaluating the accuracy performance of lucas-kanade algorithm in the circumstance of piv application. Sci China-Phys Mech Astron, 2015,58:104704
    [26] Clauser FH. Turbulent boundary layers in adverse pressure gradients. Journal of Aeronautic Science, 1954,21:91-108
    [27] Choi KS. Near wall structure of turbulent boundary layer with riblets. Journal of Fluid Mechanics, 1989,208:417-458
    [28] Eisma J, Westerweel J, Ooms G, et al. Interfaces and internal layers in a turbulent boundary layer. Phys Fluids, 2015,27:055103
    [29] Mandelbrot BB. On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. Journal of Fluid Mechanics, 1975,72:401-416
    [30] Sreenivasan KR, Ramshankar R, Meneveau C. Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc R Soc A-Math Phys Eng Sci, 1989,421:79-108
    [31] Prasad RR, Sreenivasan KR. Scalar interfaces in digital images of turbulent flows. Exp Fluids, 1989,7:259-264
    [32] Mandelbrot BB, Wheeler JA. The Fractal Geometry of Nature. New York: Springer, 1983
    [33] Mistry D, Dawson JR, Kerstein AR. The multi-scale geometry of the near field in an axisymmetric jet. Journal of Fluid Mechanics, 2018,838:501-515
    [34] Breda M, Buxton ORH. Behaviour of small-scale turbulence in the turbulent/non-turbulent interface region of developing turbulent jets. Journal of Fluid Mechanics, 2019,879:187-216
  • 加载中
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  143
  • PDF下载量:  328
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回