[1] |
Schulte P, Alegret L, Arenillas I, et al. The chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science, 2010,327(5970):1214-1218
|
[2] |
Chyba CF, Thomas PJ, Zahnle KJ. The 1908 tunguska explosion-atmospheric disruption of a stony asteroid. Nature, 1993,361(6407):40-44
|
[3] |
罗跃, 王磊, 党雷宁 等. 模拟 Chelyabinsk 小行星进入的烧蚀实验, 力学学报, 2020,52(5):1362-1370(Luo Yue, Wang Lei, Dang Leining, Liu Jinbo, Zhang Jun, Liu Sen. Arcjet ablation experiment to simulate the chelyabinsk asteroid entry. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1362-1370 (in Chinese))
|
[4] |
龚自正, 李明, 陈川, 等. 小行星监测预警, 安全防御和资源利用的前沿科学问题及关键技术. 科学通报, 2020,65(5):28-54(Gong Zizheng, Li Ming, Chen Chuan, et al. The frontier science and key technologies of asteroid monitoring and early warning, security defense and resource utilization. Chinese Science Bulletin, 2020,65:346-372 (in Chinese))
|
[5] |
Wie B, Zimmerman B, Lyzhoft J, et al. Planetary defense mission concepts for disrupting/pulverizing hazardous asteroids with short warning time. Astrodynamics, 2017,1(1):3-21
|
[6] |
Lubin P, Hughes GB, Bible J, et al. Toward directed energy planetary defense. Optical Engineering, 2014,53(2):025103
|
[7] |
Sanchez JP, Mcinnes CR. Synergistic approach of asteroid exploitation and planetary protection, Advances in Space Research, 2012,49(4):667-685
|
[8] |
Lu ET, Love SG. Gravitational tractor for towing asteroids. Nature, 2005,438(7065):177-178
|
[9] |
Bombardelli C, Amato D, Luis Cano J. Mission analysis for the ion beam deflection of fictitious asteroid 2015 PDC. Acta Astronautica, 2016,118:296-307
|
[10] |
A'hearn MF, Belton MJS, Delamere WA, et al. Deep Impact: Excavating comet Tempel 1. Science, 2005,310(5746):258-264
|
[11] |
Raducan SD, Davison TM, Luther R, et al. The role of asteroid strength, porosity and internal friction in impact momentum transfer. Icarus, 2019,329:282-295
|
[12] |
Atchison JA, Ozimek MT, Kantsiper BL, et al. Trajectory options for the DART mission. Acta Astronautica, 2016,123:330-339
|
[13] |
Ozimek MT, Atchison JA. NASA double asteroid redirection test (DART) low-thrust trajectory concept// Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, USA, F, 2017
|
[14] |
Atchison JA, Dong CP, Jensenius MA, et al. Double asteroid redirection test—Mission design and navigation// Proceedings of the International Syposium on Space Flight Mechanics, F, 2014
|
[15] |
Ahrens TJ, Harris AW. Deflection and fragmentation of near-earth asteroids. Nature, 1992,360(6403):429-433
|
[16] |
Carusi A, Valsecchi GB, D'abramo G, et al. Deflecting NEOs in route of collision with the Earth. Icarus, 2002,159(2):417-422
|
[17] |
Park SY, Ross IM. Two-body optimization for deflecting Earth-crossing asteroids. Journal of Guidance Control and Dynamics, 1999,22(3):415-420
|
[18] |
Ross M, Park SY, Porter SDV. Gravitational effects of Earth in optimizing Delta V for deflecting Earth-crossing asteroids. Journal of Spacecraft and Rockets, 2001,38(5):759-764
|
[19] |
Kahle R, Hahn G, Kuhrt E. Optimal deflection of NEOs en route of collision with the Earth. Icarus, 2006,182(2):482-488
|
[20] |
Vasile M, Colombo C. Optimal impact strategies for asteroid deflection. Journal of Guidance Control and Dynamics, 2008,31(4):858-872
|
[21] |
Yamaguchi K, Yamakawa H. Visualization of kinetic-impact effectiveness for asteroid deflection using impact-geometry maps. Journal of Spacecraft and Rockets, 2018,55(5):1181-1197
|
[22] |
Greenstreet S, Lu E, Loucks M, et al. Required deflection impulses as a function of time before impact for Earth-impacting asteroids. Icarus, 2020,347
|
[23] |
Englander JA, Conway BA, Wall BJ, et al. Optimal Strategies Found Using Genetic Algorithms for Deflecting Hazardous Near-Earth Objects. New York: IEEE, 2009
|
[24] |
Howley K, Wasem J. A simplified approach to uncertainty quantification for orbits in impulsive deflection scenarios. Acta Astronautica, 2014,104(1):206-219
|
[25] |
Conway BA. Near-optimal deflection of earth-approaching asteroids. Journal of Guidance Control and Dynamics, 2001,24(5):1035-1037
|
[26] |
Izzo D. Optimization of interplanetary trajectories for impulsive and continuous asteroid deflection. Journal of Guidance Control and Dynamics, 2007,30(2):401-408
|
[27] |
Sanchez JP, Colombo C. Impact hazard protection efficiency by a small kinetic impactor. Journal of Spacecraft and Rockets, 2013,50(2):380-393
|
[28] |
Thiry N, Vasile M. Statistical multi-criteria evaluation of non-nuclear asteroid deflection methods. Acta Astronautica, 2017,140:293-307
|
[29] |
Folkner WM, Williams JG, Boggs DH, et al. The planetary and lunar ephemerides DE430 and DE431. Interplanetary Network Progress Report, 2014,196:1-81
|
[30] |
Website: JPL Horizons On-Line Ephemeris System. https://ssd.jpl.nasa.gov/horizons.cgi#results, 2021
|
[31] |
Bancelin D, Colas F, Thuillot W, et al. Asteroid (99942) Apophis: new predictions of Earth encounters for this potentially hazardous asteroid. Astronomy & Astrophysics, 2012,544:5
|
[32] |
Kochetova O, Chernetenko YA, Shor V. How precise is the orbit of asteroid (99942) Apophis and how probable is its collision with the Earth in 2036-2037?. Solar System Research, 2009,43(4):324-333
|
[33] |
Farnocchia D, Chesley S, Tholen D, et al. High precision predictions for near-Earth asteroids: the strange case of (3908) Nyx. Celestial Mechanics and Dynamical Astronomy, 2014,119(3-4):301-312
|
[34] |
Armellin R, Di Lizia P, Bernelli-Zazzera F, et al. Asteroid close encounters characterization using differential algebra: The case of Apophis. Celestial Mechanics & Dynamical Astronomy, 2010,107(4):451-470
|
[35] |
Pitz A, Teubert C, Wei B. Earth-impact probability computation of disrupted asteroid fragments using gmat/stk/codes. Advances in the Astronautical Science, 2011,142:AAS11-408
|
[36] |
Brent RP. Algorithms for Minimization Without Derivatives. Mathematics of Computation, 1973,19(5)10.2307/20050713
|
[37] |
Farnocchia D, Eggl S, Chodas PW, et al. Planetary encounter analysis on the B-plane: a comprehensive formulation. Celestial Mechanics & Dynamical Astronomy, 2019,131(8):16
|
[38] |
?pik EJ. Interplanetary Encounters: Close Range Gravitational Interactions. Elsevier Scientific Pub., 1976
|
[39] |
Liu J, Zheng J, Li M. Dry mass optimization for the impulsive transfer trajectory of a near-Earth asteroid sample return mission. Astrophysics and Space Science, 2019,364(12):215
|
[40] |
Vallado DA. Fundamentals of astrodynamics and applications. Springer Science & Business Media, 2001
|
[41] |
Rumpf CM, Mathias DL, Wheeler LF, et al. Deflection driven evolution of asteroid impact risk under large uncertainties. Acta Astronautica, 2020,176:276-286
|
[42] |
Paek SW, De Weck O, Hoffman J, et al. Optimization and decision-making framework for multi-staged asteroid deflection campaigns under epistemic uncertainties. Acta Astronautica, 2020,167:23-41
|