EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏转距离近似模型的动能撞击小行星防御任务脉冲轨道优化研究

王艺睿 李明涛 周炳红

王艺睿, 李明涛, 周炳红. 基于偏转距离近似模型的动能撞击小行星防御任务脉冲轨道优化研究[J]. 力学学报, 2021, 53(3): 912-928. doi: 10.6052/0459-1879-20-210
引用本文: 王艺睿, 李明涛, 周炳红. 基于偏转距离近似模型的动能撞击小行星防御任务脉冲轨道优化研究[J]. 力学学报, 2021, 53(3): 912-928. doi: 10.6052/0459-1879-20-210
Wang Yirui, Li Mingtao, Zhou Binghong. IMPULSIVE TRAJECTORY OPTIMIZATION OF KINETIC IMPACTOR MISSIONS FOR ASTEROID DEFLECTION BASED ON AN APPROXIMATION DEFLECTION MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 912-928. doi: 10.6052/0459-1879-20-210
Citation: Wang Yirui, Li Mingtao, Zhou Binghong. IMPULSIVE TRAJECTORY OPTIMIZATION OF KINETIC IMPACTOR MISSIONS FOR ASTEROID DEFLECTION BASED ON AN APPROXIMATION DEFLECTION MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 912-928. doi: 10.6052/0459-1879-20-210

基于偏转距离近似模型的动能撞击小行星防御任务脉冲轨道优化研究

doi: 10.6052/0459-1879-20-210
基金项目: 1) 北京市重大科技专项(Z181100002918004);民用航天预研项目(D020304);国家自然科学基金(11672293)
详细信息
    作者简介:

    周炳红, 研究员, 主要研究方向: 小行星防御与利用、飞行器设计、流体力学. E-mail: bhzhou@nssc.ac.cn
    李明涛, 研究员, 主要研究方向: 小行星防御与利用、航天动力学与控制. E-mail: limingtao@nssc.ac.cn;
    2) 王艺睿, 博士研究生, 主要研究方向: 小行星防御与利用、卫星轨道动力学. E-mail: wangyirui17@mails.ucas.ac.cn;

    通讯作者:

    王艺睿

    李明涛

    周炳红

  • 中图分类号: V11

IMPULSIVE TRAJECTORY OPTIMIZATION OF KINETIC IMPACTOR MISSIONS FOR ASTEROID DEFLECTION BASED ON AN APPROXIMATION DEFLECTION MODEL

  • 摘要: 小行星撞击对地球上的生命存在重大潜在威胁,动能撞击是目前最易实现且成熟度最高的防御方案.动能撞击任务的一种轨道优化指标为最大化偏转距离(即小行星被偏转前后近地距的改变量),若用数值积分的方法精确计算偏转距离, 会导致优化效率较低.在动能撞击任务的设计初期, 可以对动力学模型及偏转距离的计算方法进行简化,以提升优化效率. 本文首先将高精度模型简化为二体模型,分析了两种经典偏转距离解析模型的适用条件,同时提出一种基于近地点时刻预估的偏转距离近似模型; 考虑运载约束,将化学推进变轨简化为脉冲推力变轨,建立了直接转移(两脉冲及三脉冲)和行星借力飞行转移(单次及两次借力)的动能撞击轨道优化模型,利用遗传算法求解了优化问题. 以偏转小行星Apophis为例, 相比于解析模型,验证了本文提出的近似模型可以同时提升最优性、降低求解复杂性. 优化结果表明,三脉冲直接转移方案与两脉冲直接转移方案的最优偏转效果基本一致,借力飞行转移方案相比于直接转移方案对偏转距离的提升效果并不明显.在动能撞击任务的前期设计中, 可以基于二体模型进行防御效果的快速评估,虽然对计算偏转距离存在一定误差, 但对防御窗口的优化结果影响不大. 进一步,数值求解偏转距离时, 可通过引入主要引力摄动项(金星、地球、木星)修正二体模型,使其与高精度模型之间的求解误差在1%以下.

     

  • [1] Schulte P, Alegret L, Arenillas I, et al. The chicxulub asteroid impact and mass extinction at the cretaceous-paleogene boundary. Science, 2010,327(5970):1214-1218
    [2] Chyba CF, Thomas PJ, Zahnle KJ. The 1908 tunguska explosion-atmospheric disruption of a stony asteroid. Nature, 1993,361(6407):40-44
    [3] 罗跃, 王磊, 党雷宁 等. 模拟 Chelyabinsk 小行星进入的烧蚀实验, 力学学报, 2020,52(5):1362-1370

    (Luo Yue, Wang Lei, Dang Leining, Liu Jinbo, Zhang Jun, Liu Sen. Arcjet ablation experiment to simulate the chelyabinsk asteroid entry. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1362-1370 (in Chinese))
    [4] 龚自正, 李明, 陈川, 等. 小行星监测预警, 安全防御和资源利用的前沿科学问题及关键技术. 科学通报, 2020,65(5):28-54

    (Gong Zizheng, Li Ming, Chen Chuan, et al. The frontier science and key technologies of asteroid monitoring and early warning, security defense and resource utilization. Chinese Science Bulletin, 2020,65:346-372 (in Chinese))
    [5] Wie B, Zimmerman B, Lyzhoft J, et al. Planetary defense mission concepts for disrupting/pulverizing hazardous asteroids with short warning time. Astrodynamics, 2017,1(1):3-21
    [6] Lubin P, Hughes GB, Bible J, et al. Toward directed energy planetary defense. Optical Engineering, 2014,53(2):025103
    [7] Sanchez JP, Mcinnes CR. Synergistic approach of asteroid exploitation and planetary protection, Advances in Space Research, 2012,49(4):667-685
    [8] Lu ET, Love SG. Gravitational tractor for towing asteroids. Nature, 2005,438(7065):177-178
    [9] Bombardelli C, Amato D, Luis Cano J. Mission analysis for the ion beam deflection of fictitious asteroid 2015 PDC. Acta Astronautica, 2016,118:296-307
    [10] A'hearn MF, Belton MJS, Delamere WA, et al. Deep Impact: Excavating comet Tempel 1. Science, 2005,310(5746):258-264
    [11] Raducan SD, Davison TM, Luther R, et al. The role of asteroid strength, porosity and internal friction in impact momentum transfer. Icarus, 2019,329:282-295
    [12] Atchison JA, Ozimek MT, Kantsiper BL, et al. Trajectory options for the DART mission. Acta Astronautica, 2016,123:330-339
    [13] Ozimek MT, Atchison JA. NASA double asteroid redirection test (DART) low-thrust trajectory concept// Proceedings of the 27th AAS/AIAA Space Flight Mechanics Meeting, San Antonio, USA, F, 2017
    [14] Atchison JA, Dong CP, Jensenius MA, et al. Double asteroid redirection test—Mission design and navigation// Proceedings of the International Syposium on Space Flight Mechanics, F, 2014
    [15] Ahrens TJ, Harris AW. Deflection and fragmentation of near-earth asteroids. Nature, 1992,360(6403):429-433
    [16] Carusi A, Valsecchi GB, D'abramo G, et al. Deflecting NEOs in route of collision with the Earth. Icarus, 2002,159(2):417-422
    [17] Park SY, Ross IM. Two-body optimization for deflecting Earth-crossing asteroids. Journal of Guidance Control and Dynamics, 1999,22(3):415-420
    [18] Ross M, Park SY, Porter SDV. Gravitational effects of Earth in optimizing Delta V for deflecting Earth-crossing asteroids. Journal of Spacecraft and Rockets, 2001,38(5):759-764
    [19] Kahle R, Hahn G, Kuhrt E. Optimal deflection of NEOs en route of collision with the Earth. Icarus, 2006,182(2):482-488
    [20] Vasile M, Colombo C. Optimal impact strategies for asteroid deflection. Journal of Guidance Control and Dynamics, 2008,31(4):858-872
    [21] Yamaguchi K, Yamakawa H. Visualization of kinetic-impact effectiveness for asteroid deflection using impact-geometry maps. Journal of Spacecraft and Rockets, 2018,55(5):1181-1197
    [22] Greenstreet S, Lu E, Loucks M, et al. Required deflection impulses as a function of time before impact for Earth-impacting asteroids. Icarus, 2020,347
    [23] Englander JA, Conway BA, Wall BJ, et al. Optimal Strategies Found Using Genetic Algorithms for Deflecting Hazardous Near-Earth Objects. New York: IEEE, 2009
    [24] Howley K, Wasem J. A simplified approach to uncertainty quantification for orbits in impulsive deflection scenarios. Acta Astronautica, 2014,104(1):206-219
    [25] Conway BA. Near-optimal deflection of earth-approaching asteroids. Journal of Guidance Control and Dynamics, 2001,24(5):1035-1037
    [26] Izzo D. Optimization of interplanetary trajectories for impulsive and continuous asteroid deflection. Journal of Guidance Control and Dynamics, 2007,30(2):401-408
    [27] Sanchez JP, Colombo C. Impact hazard protection efficiency by a small kinetic impactor. Journal of Spacecraft and Rockets, 2013,50(2):380-393
    [28] Thiry N, Vasile M. Statistical multi-criteria evaluation of non-nuclear asteroid deflection methods. Acta Astronautica, 2017,140:293-307
    [29] Folkner WM, Williams JG, Boggs DH, et al. The planetary and lunar ephemerides DE430 and DE431. Interplanetary Network Progress Report, 2014,196:1-81
    [30] Website: JPL Horizons On-Line Ephemeris System. https://ssd.jpl.nasa.gov/horizons.cgi#results, 2021
    [31] Bancelin D, Colas F, Thuillot W, et al. Asteroid (99942) Apophis: new predictions of Earth encounters for this potentially hazardous asteroid. Astronomy & Astrophysics, 2012,544:5
    [32] Kochetova O, Chernetenko YA, Shor V. How precise is the orbit of asteroid (99942) Apophis and how probable is its collision with the Earth in 2036-2037?. Solar System Research, 2009,43(4):324-333
    [33] Farnocchia D, Chesley S, Tholen D, et al. High precision predictions for near-Earth asteroids: the strange case of (3908) Nyx. Celestial Mechanics and Dynamical Astronomy, 2014,119(3-4):301-312
    [34] Armellin R, Di Lizia P, Bernelli-Zazzera F, et al. Asteroid close encounters characterization using differential algebra: The case of Apophis. Celestial Mechanics & Dynamical Astronomy, 2010,107(4):451-470
    [35] Pitz A, Teubert C, Wei B. Earth-impact probability computation of disrupted asteroid fragments using gmat/stk/codes. Advances in the Astronautical Science, 2011,142:AAS11-408
    [36] Brent RP. Algorithms for Minimization Without Derivatives. Mathematics of Computation, 1973,19(5)10.2307/20050713
    [37] Farnocchia D, Eggl S, Chodas PW, et al. Planetary encounter analysis on the B-plane: a comprehensive formulation. Celestial Mechanics & Dynamical Astronomy, 2019,131(8):16
    [38] ?pik EJ. Interplanetary Encounters: Close Range Gravitational Interactions. Elsevier Scientific Pub., 1976
    [39] Liu J, Zheng J, Li M. Dry mass optimization for the impulsive transfer trajectory of a near-Earth asteroid sample return mission. Astrophysics and Space Science, 2019,364(12):215
    [40] Vallado DA. Fundamentals of astrodynamics and applications. Springer Science & Business Media, 2001
    [41] Rumpf CM, Mathias DL, Wheeler LF, et al. Deflection driven evolution of asteroid impact risk under large uncertainties. Acta Astronautica, 2020,176:276-286
    [42] Paek SW, De Weck O, Hoffman J, et al. Optimization and decision-making framework for multi-staged asteroid deflection campaigns under epistemic uncertainties. Acta Astronautica, 2020,167:23-41
  • 加载中
计量
  • 文章访问数:  479
  • HTML全文浏览量:  63
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-18
  • 刊出日期:  2021-03-10

目录

    /

    返回文章
    返回