EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多个局部温度载荷下压电半导体纤维杆的压电电子学行为分析

程若然 张春利

程若然, 张春利. 多个局部温度载荷下压电半导体纤维杆的压电电子学行为分析[J]. 力学学报, 2020, 52(5): 1295-1303. doi: 10.6052/0459-1879-20-128
引用本文: 程若然, 张春利. 多个局部温度载荷下压电半导体纤维杆的压电电子学行为分析[J]. 力学学报, 2020, 52(5): 1295-1303. doi: 10.6052/0459-1879-20-128
Cheng Ruoran, Zhang Chunli. ANALYSIS OF THE PIEZOTRONIC EFFECT OF A PIEZOELETRIC SEMICONDUCTOR FIBER UNDER MUTIPLE LOCAL TEMPERATURE LOADINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1295-1303. doi: 10.6052/0459-1879-20-128
Citation: Cheng Ruoran, Zhang Chunli. ANALYSIS OF THE PIEZOTRONIC EFFECT OF A PIEZOELETRIC SEMICONDUCTOR FIBER UNDER MUTIPLE LOCAL TEMPERATURE LOADINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1295-1303. doi: 10.6052/0459-1879-20-128

多个局部温度载荷下压电半导体纤维杆的压电电子学行为分析

doi: 10.6052/0459-1879-20-128
基金项目: 1)国家自然科学基金(11672265);国家自然科学基金(11972139);国家自然科学基金(11621062);深圳市科技创新委(JCYJ20180227175523802);机械结构力学及控制国家重点实验室开放课题(MCMS-E-0220K01)
详细信息
    通讯作者:

    张春利

  • 中图分类号: O343.6

ANALYSIS OF THE PIEZOTRONIC EFFECT OF A PIEZOELETRIC SEMICONDUCTOR FIBER UNDER MUTIPLE LOCAL TEMPERATURE LOADINGS

  • 摘要: 温度改变产生的极化电势可对压电半导体结构内的物理量进行有效调控, 这在穿戴电子器件及与温度相关的半导体电子器件中有重要工程应用价值. 本文针对在多个局部均匀温度变化作用下的压电半导体杆结构, 采用一维热压电半导体多场耦合方程, 基于线性化的漂移-扩散(drift-diffusion)电流模型导出了问题的解析解. 以两个局部温度载荷情况为例, 数值分析了局部温度改变对压电半导体内位移、电势、电位移、极化强度、载流子分布等物理场的影响. 对于温度改变较大的情况, 在COMSOL软件的PDE模块中, 采用非线性电流模型, 进行数值模拟. 研究结果表明: 由于两个局部区域的温度改变, 在半导体杆内形成了局部势垒和势阱, 不同的温度改变量和作用区域会产生不同高度/深度的势垒/势阱, 为基于压电半导体的热压电电子学器件结构设计提供了理论指导.

     

  • [1] Hickernell FS. The piezoelectric semiconductor and acoustoelectronic device development in the sixties. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005,52(5):737-745
    [2] Wang ZL. Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Advanced Materials, 2003,15(5):432-436
    [3] Wen X, Wu W, Ding Y, et al. Piezotronic effect in flexible thin-film based devices. Advanced Materials, 2013,25(24):3371-3379
    [4] Lee KY, Kumar B, Seo JS, et al. P-type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Letters, 2012,12(4):1959-1964
    [5] Gao PX, Song J, Liu J, et al. Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices. Advanced Materials, 2007,19(1):67-72
    [6] Choi MY, Choi D, Jin MJ, et al. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Advanced Materials, 2009,21(21):2185-2189
    [7] Romano G, Mantini G, Di Carlo A, et al. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology, 2011,22(46):465401
    [8] Büyükk?se S, Hernandez-Minguez A, Vratzov B, et al. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology, 2014,25(13):135204
    [9] Wang XD, Zhou J, Song JH, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 2006,6(12):2768-2772
    [10] Wang ZL. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today, 2010,5(6):540-552
    [11] Yu J, Ippolito SJ, Wlodarski W, et al. Nanorod based Schottky contact gas sensors in reversed bias condition. Nanotechnology, 2010,21(26):265502
    [12] Liu Y, Zhang Y, Yang Q, et al. Fundamental theories of piezotronics and piezo-phototronics. Nano Energy, 2015,14:257-275
    [13] Wang ZL, Wu WZ. Piezotronics and piezo-phototronics: fundamentals and applications. National Science Review, 2013,1(1):62-90
    [14] Wang ZL, Wu WZ, Falconi C. Piezotronics and piezo-phototronics with third-generation semiconductors. MRS Bulletin, 2018,43(12):922-927
    [15] Araneo R, Lovat G, Burghignoli P, et al. Piezo-semiconductive quasi-1D nanodevices with or without anti-symmetry. Advanced Materials, 2012,24(34):4719-4724
    [16] Zhang CL, Wang XY, Chen WQ, et al. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures, 2017,26(2):025030
    [17] Zhang CL, Luo YX, Cheng RR, et al. Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Advances, 2017,2(56):3421-3426
    [18] Luo YX, Zhang CL, Chen WQ, et al. An analysis of PN junctions in piezoelectric semiconductors. Journal of Applied Physics, 2017,122(20):204502
    [19] Luo YX, Zhang CL, Chen WQ, et al. Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 2018,54:341-348
    [20] Cheng RR, Zhang CL, Chen WQ, et al. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 2018,124(6):064506
    [21] Yang GY, Du J K, Wang J, et al. Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mechanica, 2018,229(11):4663-4676
    [22] Wang GL, Liu JX, Liu XL, et al. Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. Journal of Applied Physics, 2018,124(9):094502
    [23] Yang WL, Hu YT, Yang JS. Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force. Materials Research Express, 2018,6(2):025902
    [24] Gao YF, Wang ZL. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Letters, 2007,7(8):2499-2505
    [25] Gao YF, Wang ZL. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Letters, 2009,9(3):1103-1110
    [26] Fan SQ, Liang YX, Xie JM, et al. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: Part I--Linearized analysis. Nano Energy, 2017,40:82-87
    [27] Dai XY, Zhu F, Qian ZH, et al. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy, 2018,43:22-28
    [28] Yang GY, Du JK, Wang J, et al. Electromechanical fields in a nonuniform piezoelectric semiconductor rod. Journal of Mechanics of Materials and Structures, 2018,13(1):103-120
    [29] Mindlin RD. Equations of high frequency vibrations of thermopiezoelectric crystal plates. International Journal of Solids and Structures, 1974,10(6):625-637
    [30] Cheng RR, Zhang CL, Yang JS. Thermally induced carrier distribution in a piezoelectric semi-conductor fiber. Journal of Electronic Materials, 2019,48(8):4939-4946
    [31] Cheng RR, Zhang CL, Chen WQ, et al. Temperature effects on mobile charges in extension of composite fibers of piezoelectric dielectrics and nonpiezoelectric semiconductors. International Journal of Applied Mechanics, 2019, doi: 10.1142/S1758825119500893
    [32] Cheng RR, Zhang CL, Chen WQ, et al. Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change. Nano Energy, 2019,66:104081
    [33] Auld BA. Acoustic Fields and Waves in Solids, vol. I. New York : John Wiley and Sons, 1973
    [34] Hellwege KH, Hellwege AM. Landolt-B?rnstein: Numerical Data and Functional Relationships in Science and Technology Group III Crystal and Solid State Physics. New York: Springer-Verlag Berlin Heidelberg, 1979
    [35] Albertsson J, Abrahams SC, Kvick ?. Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO. Acta Crystallographica Section B$:$ Structural Science, 1989,45(1):34-40
    [36] Sze SM. Physics of Semiconductor Devices, 3rd ed. New York: John Wiley and Sons, 2006
  • 加载中
计量
  • 文章访问数:  507
  • HTML全文浏览量:  62
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-20
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回