EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短激光脉冲加热薄板的广义热弹扩散问题

李妍 何天虎 田晓耕

李妍, 何天虎, 田晓耕. 超短激光脉冲加热薄板的广义热弹扩散问题[J]. 力学学报, 2020, 52(5): 1255-1266. doi: 10.6052/0459-1879-20-118
引用本文: 李妍, 何天虎, 田晓耕. 超短激光脉冲加热薄板的广义热弹扩散问题[J]. 力学学报, 2020, 52(5): 1255-1266. doi: 10.6052/0459-1879-20-118
Li Yan, He Tianhu, Tian Xiaogeng. A GENERALIZED THERMOELASTIC DIFFUSION PROBLEM OF THIN PLATE HEATED BY THE ULTRASHORT LASER PULSES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1255-1266. doi: 10.6052/0459-1879-20-118
Citation: Li Yan, He Tianhu, Tian Xiaogeng. A GENERALIZED THERMOELASTIC DIFFUSION PROBLEM OF THIN PLATE HEATED BY THE ULTRASHORT LASER PULSES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1255-1266. doi: 10.6052/0459-1879-20-118

超短激光脉冲加热薄板的广义热弹扩散问题

doi: 10.6052/0459-1879-20-118
基金项目: 1)国家自然科学基金资助项目(11732007);国家自然科学基金资助项目(11572237)
详细信息
    通讯作者:

    田晓耕

  • 中图分类号: O343.6

A GENERALIZED THERMOELASTIC DIFFUSION PROBLEM OF THIN PLATE HEATED BY THE ULTRASHORT LASER PULSES

  • 摘要: 由于超短激光脉冲具有功率密度高、持续时间短、加工精度高等优势, 近年来被广泛应用于超精细加工、光学储存和微电子器件制造等领域. 本文基于L-S型广义热弹扩散理论, 建立了考虑材料记忆依赖效应和空间非局部效应的记忆依赖型非局部广义热弹扩散耦合理论, 它能够准确预测几何尺寸与内部特征尺寸相近结构的热弹扩散瞬态响应. 推导了所建理论的控制方程, 并基于拉普拉斯积分变换获得了控制方程的解. 作为算例, 利用所建理论和求解方法研究了半无限大薄板受非高斯激光脉冲加热和化学冲击联合作用下的热弹扩散瞬态响应问题, 得到了薄板的温度、化学势、位移、应力和浓度等随非局部参数、热时间迟滞因子和扩散时间迟滞因子等参数变化的分布规律. 结果表明: 传热对传质影响显著, 传质对传热影响甚微; 非局部参数对位移、应力影响显著, 对温度、化学势和浓度几乎没有影响. 该理论及求解方法的建立, 旨在实现材料在机械、热、化学势等冲击作用下传热传质瞬态响应的准确预测.

     

  • [1] Maiman TH. Stimulated optical radiation in ruby. Nature, 1960,187(4736):493-494
    [2] Sun Y, Fang D, Saka M, et al. Laser-induced vibrations of micro-beams under different boundary conditions. International Journal of Solids & Structures, 2008,45(7-8):1993-2013
    [3] Wang X, Xu X. Thermoelastic wave induced by pulsed laser heating. Applied Physics A, 2001,73(1):107-114
    [4] Youssef HM, El-Bary AA. Thermoelastic material response due to laser pulse heating in context of four theorems of thermoelasticity. Journal of Thermal Stresses, 2014,37(12):1379-1389
    [5] Elhagary MA. A two-dimensional generalized thermoelastic diffusion problem for a thick plate subjected to thermal loading due to laser pulse. Journal of Thermal Stresses, 2014,37(12):1416-1432
    [6] Othman MIA, Eraki EEM. Effect of gravity on generalized thermoelastic diffusion due to laser pulse using dual-phase-lag model. Multidiscipline Modeling in Materials and Structures, 2018, MMMS-08-2017-0087
    [7] 许光映, 王晋宝, 薛大文. 短脉冲激光加热分数阶导热及其热应力研究. 力学学报, 2020,52(2):491-502
    [7] ( Xu Guangyin, Wang Jinbao, Xue Dawen. Investigations on the thermal behavior and associated thermal stresses of the fractional heat conduction for short pulse laser heating. Chinese Journal of Theoretical ad Applied Mechanics, 2020,52(2):491-502 (in Chinese))
    [8] 王殿恺, 文明, 王伟东 等. 脉冲激光与正激波相互作用过程和减阻机理的实验研究. 力学学报, 2018,50(6):1337-1345
    [8] ( Wang Diankai, Wen Ming, Wang Weidong, et al. Experimental study on process and mechanisms of wave drag reduction during pulsed laser interacting with normal shock. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1337-1345 (in Chinese))
    [9] Nowacki W. Dynamic problems of thermodiffusion in elastic solids. Proc Vibration Problems, 1974,15(2):105-128
    [10] Maxwell JC. On the dynamic theory of gases. Philosophical Transactions of the Royal Society of London, 1867,157:49-88
    [11] Peshkov V. Second sound in helium II. Journal of Physics, 1944,8:381-386
    [12] Sherief HH, Hamza FA, Saleh HA. The theory of generalized thermoelastic diffusion. International Journal of Engineering Science, 2004,42(5):591-608
    [13] Xia RH, Tian XG, Shen YP. The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity. International Journal of Engineering Science, 2009,47(5-6):669-679
    [14] Li CL, Guo HL, Tian X, et al. Transient response for a half-space with variable thermal conductivity and diffusivity under thermal and chemical shock. Journal of Thermal Stresses, 2017,40(3):389-401
    [15] Li CL, Yu YJ, Tian XG. Effect of rotation on plane waves of generalized electromagnetothermoelastics with diffusion for a half-space. Journal of Thermal Stresses, 2016,39(1):27-43
    [16] Li CL, Guo HL, Tian XG. Transient responses of generalized magnetothermoelasto-diffusive problems with rotation using Laplace transform-finite element method. Journal of Thermal Stresses, 2017,40(9):1152-1165
    [17] Diethelm K. Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Berlin, Heidelberg: Springer-Verlag, 2010
    [18] Wang JL, Li HF. Surpassing the fractional derivative: Concept of the memory-dependent derivative. Comput Math Appl, 2011,62(3):1562-1567
    [19] Yu YJ, Hu W, Tian XG. A novel generalized thermoelasticity model based on memory-dependent derivative. International Journal of Engineering Science, 2014,81(811):123-134
    [20] Ezzat MA, El-Karamany AS, El-Bary AA. Generalized thermo-viscoelasticity with memory-dependent derivatives. International Journal of Mechanical Sciences, 2014,89:470-475
    [21] Ezzat MA, El-Karamany AS, El-Bary AA. A novel magneto-thermoelasticity theory with memory-dependent derivative. Journal of Electromagnetic Waves & Applications, 2015,29(8):1018-1031
    [22] Ezzat MA, El-Karamany AS, El-Bary AA. Electro-thermoelasticity theory with memory-dependent derivative heat transfer. International Journal of Engineering Science, 2016,99:22-38
    [23] Ezzat MA, El-Bary AA. Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature. International Journal of Applied Electromagnetics & Mechanics, 2016,50(4):549-567
    [24] Ezzat MA, El-Karamany AS, El-Bary AA. On dual-phase-lag thermoelasticity theory with memory-dependent derivative. Mechanics of Composite Materials & Structures, 2017,24(11):908-916
    [25] Shaw S, Mukhopadhyay B. A discontinuity analysis of generalized thermoelasticity theory with memory-dependent derivatives. Acta Mechanica, 2017,228(7):1-15
    [26] Eringen AC, Wegner J. Nonlocal Continuum Field Theories. Applied Mechanics Reviews, 2003,56(2):391-398
    [27] Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 1983,54(9):4703-4710
    [28] Yu YJ, Tian XG, Xiong QL. Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. European Journal of Mechanics-A/Solids, 2016,60:238-253
    [29] Yu YJ, Xue ZN, Li CL, et al. Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity. Composite Structures, 2016,146:108-113
    [30] Zenkour AM. Effect of temperature-dependent physical properties on nanobeam structures induced by ramp-type heating. KSCE Journal of Civil Engineering, 2017,21(5):1820-1828
    [31] 张培, 何天虎. 考虑非局部效应和记忆依赖微分的广义热弹问题. 力学学报, 2018,50(3):508-516
    [31] ( Zhang Pei, He Tianhu. A generalized thermoelastic problem with nonlocal effect and memory- dependent derivative. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):508-516 (in Chinese))
    [32] Li Y, He TH. A generalized thermoelastic diffusion problem with memory-dependent derivative. Mathematics and Mechanics of Solids, 2019,24(5):1438-1462
    [33] Brancik L. Programs for fast numerical inversion of Laplace transforms in Matlab language environment// Proceedings of the 7th conference MATLAB'99, Czech Republic, Prague, 1999: 27-39
  • 加载中
计量
  • 文章访问数:  271
  • HTML全文浏览量:  49
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 刊出日期:  2020-10-10

目录

    /

    返回文章
    返回