EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑气动参数扰动的再入轨迹快速优化方法

杨奔 雷建长 王宇航

杨奔, 雷建长, 王宇航. 考虑气动参数扰动的再入轨迹快速优化方法[J]. 力学学报, 2020, 52(6): 1610-1620. doi: 10.6052/0459-1879-20-117
引用本文: 杨奔, 雷建长, 王宇航. 考虑气动参数扰动的再入轨迹快速优化方法[J]. 力学学报, 2020, 52(6): 1610-1620. doi: 10.6052/0459-1879-20-117
Yang Ben, Lei Jianchang, Wang Yuhang. FAST OPTIMIZATION METHOD OF REENTRY TRAJECTORY CONSIDERING AERODYNAMIC PARAMETER PERTURBATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1610-1620. doi: 10.6052/0459-1879-20-117
Citation: Yang Ben, Lei Jianchang, Wang Yuhang. FAST OPTIMIZATION METHOD OF REENTRY TRAJECTORY CONSIDERING AERODYNAMIC PARAMETER PERTURBATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1610-1620. doi: 10.6052/0459-1879-20-117

考虑气动参数扰动的再入轨迹快速优化方法

doi: 10.6052/0459-1879-20-117
详细信息
    作者简介:

    1) 杨奔,工程师,主要研究方向:飞行器动力学与控制. E-mail: silenceyb@sina.com

    通讯作者:

    杨奔

  • 中图分类号: TU411.01

FAST OPTIMIZATION METHOD OF REENTRY TRAJECTORY CONSIDERING AERODYNAMIC PARAMETER PERTURBATION

  • 摘要: 针对传统再入轨迹优化方法收敛速度慢、对初值敏感程度高等的局限性,提出了一种基于序列凸优化的再入轨迹快速求解方法.该方法以倾侧角的变化率作为控制量,改进了现有凸化策略,考虑到抑制数值优化过程中由于数值离散方式带来的锯齿化现象,采用 B 样条曲线离散控制量,同时为避免算法在初始猜想值附近出现伪不可行的问题,增加额外虚拟控制量,通过一种"回溯直线"搜索的方法,提高算法的稳定性、快速性和寻优结果的光滑性.为研究飞行器再入过程中的气动参数扰动问题,采用采样点少、易于实现,计算效率高的广义混沌多项式理论研究方法,建立了基于广义混沌多项式和凸优化相结合的再入轨迹鲁棒优化模型,该模型在优化过程中考虑气动参数扰动对寻优结果的影响作用,避免了传统轨迹与制导律的复杂迭代设计环节,可有效降低优化轨迹对气动参数扰动的敏感程度,在气动参数不确定条件的干扰下,依然可以保证飞行器顺利安全的完成飞行任务.最后,以美国某可重复使用飞行器的再入任务为例,验证了基于序列凸优化的再入轨迹优化方法的快速性以及鲁棒优化模型对气动参数扰动的抗干扰性能力,表明了该方法具有一定的工程应用性.

     

  • [1] Richie G. The common aero vehicle: Space delivery system of the future// AIAA Space Technology Conference and Exposition, Albuquerque, NM, 1999
    [2] Hermant A. Homotopy algorithm for optimal control problems with a second-order state constraint. Applied Mathematics & Optimization, 2010,61(1):85-127
    [3] Istratie V. Optimal profound entry into atmosphere with minimum heat and Constraints// AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2001: 4069
    [4] Bollino K, Oppenheimer M, Doman D. Optimal guidance command generation and tracking for reusable launch vehicle reentry// AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006: 6691
    [5] 黄长强, 国海峰, 丁达理. 高超声速滑翔飞行器轨迹优化与制导综述. 宇航学报, 2014,35(4):369-379
    [5] ( Huang Changqiang, Guo Haifang, Ding Dali. A survey of trajectory optimization and guidance for hypersonic gliding vehicle. Journal of Astronautics, 2014,35(4):369-379 (in Chinese))
    [6] Rea J. Launch vehicle trajectory optimization using a Legendre pseudo-spectral method// AIAA Guidance, Navigation, and Control Conference and Exhibit, 2003: 5640
    [7] Harpold JC, Gavert DE. Space shuttle entry guidance performance results. Journal of Guidance, Control & Dynamics, 1983,6(6):442-447
    [8] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004: 157-160
    [9] Nesterov Y, Nemirovskii A. Interior-point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics Press, 1994: 102-137
    [10] Ploen SR. Convex programming approach to powered descent guidance for mars landing. Journal of Guidance Control & Dynamics, 2007,30(5):1353-1366
    [11] A?$\imath$kmese B, Carson JM, Blackmore L. Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem. IEEE Transactions on Control Systems Technology, 2013,21(6):2104-2113
    [12] Harris MW, A?$\imath$kmese B. Lossless convexification of non-convex optimal control problems for state constrained linear systems. Automatica, 2014,50(9):2304-2311
    [13] Harris MW, A?$\imath$kmese B. Lossless convexification for a class of optimal control problems with linear state constraints// Decision and Control IEEE, 2013: 7113-7118
    [14] Scharf DP, Regehr MW, Vaughan GM, et al. ADAPT demonstrations of onboard large-divert Guidance with a VTVL rocket// Aerospace Conference IEEE, 2014
    [15] Liu X, Shen Z, Lu P. Entry trajectory optimization by second-order cone programming. Journal of Guidance Control & Dynamics, 2015,39(2):227-241
    [16] Wang Z, Grant MJ. Constrained trajectory optimization for planetary entry via sequential convex programming// AIAA Atmospheric Flight Mechanics Conference, 2016: 3241
    [17] 林晓辉, 于文进. 基于凸优化理论的含约束月球定点着陆轨道优化. 宇航学报, 2013,34(7):901-908
    [17] ( Lin Xiaohui, Yu Wenjin. Constrained trajectory optimization for lunar pin point landing based on convex optimization theory. Journal of Astronautics, 2013,34(7):901-908 (in Chinese))
    [18] 樊朋飞, 郭云鹤, 凡永华 等. HGV 平衡滑翔式轨迹可达区域计算方法研究. 计算机测量与控制, 2019,27(5):136-140
    [18] ( Fan Pengfei, Guo Yunhe, Fan Yonghua, et al. Footprint calculation of HGV with equilibrium gliding trajectory. Computer Measurement and Control, 2019,27(5):136-140 (in Chinese))
    [19] 邵楠, 闫晓东. 火箭垂直回收多阶段最优轨迹规划方法. 宇航学报, 2019,40(10):1187-1196
    [19] ( Shao Nan, Yan Xiaodong. Multi-stage trajectory optimization for vertical pin-point landing of a reusable launch vehicle. Journal of Astronautics, 2014,35(4):369-379 (in Chinese))
    [20] 李俊, 江振宇. 一种高超声速滑翔再入在线轨迹规划算法. 北京航空航天大学学报, 2020,46(3):579-587
    [20] ( Li Jun, Jiang Zhenyu. Online trajectory planning algorithm for hypersonic glide re-entry problem. Journal of Beijing University of Aeronautics and Astronautics, 2020,46(3):579-587 (in Chinese))
    [21] Rangaraj R, Chaudhuri A, Gupta S. The use of polynomial chaos for parameter identification from measurements in nonlinear dynamical systems. Zamm Journal of Applied Mathematics & Mechanics, 2015,12(1):1372-1392
    [22] Xiong F, Xiong Y, Xue B. Trajectory optimization under uncertainty based on polynomial chaos expansion// AIAA Guidance, Navigation, and Control Conference, Kissimmee, Florida, 2015
    [23] Li X, Nair PB, Zhang ZG, et al. Aircraft robust trajectory optimization using nonintrusive polynomial chaos. Journal of Aircraft, 2014,51(51):1592-1603
    [24] Grant MJ, Bolender MA. Rapid, robust trajectory design using indirect optimization methods// AIAA Atmospheric Flight Mechanics Conference, Dallas, USA, 2015
    [25] Yu Z, Zhao Z, Cui P. An observability-based trajectory optimization considering disturbance for atmospheric entry// AIAA Guidance, Navigation, and Control Conference, California, USA, 2016
    [26] Jones BA, Doostan A, Born GH. Nonlinear propagation of orbit uncertainty using non-intrusive polynomial chaos. Journal of Guidance Control & Dynamics, 2013,36(2):430-444
    [27] Xiu D, Karniadakis GE. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 2002,24(2):619-644
    [28] Eldred MS, Webster CG, Constantine P. Evaluation of non-intrusive approaches for Wiener-Askey generalized polynomial chaos// Structural Dynamical and Materials Conference, 2008
    [29] Cottrill GC. Hybrid solution of stochastic optimal control problems using Gauss pseudospectral method and generalized polynomial chaos algorithms. Air Force Institute of Technology. 2012
    [30] Tao J, Zeng X, Cai W, et al. Stochastic sparse-grid collocation algorithm for periodic steady-state analysis of nonlinear system with process variations// Proceedings of the 2007 Asia and South Pacific Design Automation Conference, 2007
    [31] Gottlieb D, Xiu D. Galerkin method for wave equations with uncertain coefficients. Communications in Computational Physics, 2008,3(2):505-518
    [32] Knio OM, Najm HN, Ghanem RG. A stochastic projection method for fluid flow: I. Basic formulation. Journal of computational Physics, 2001,173(2):481-511
    [33] 熊芬芬, 杨树兴, 刘宇 等. 工程概率不确定性分析方法. 北京: 科学出版社, 2015
    [33] ( Xiong Fenfen, Yang Shuxing, Liu Yu, et al. Engineering Probability Uncertainty Analysis Method. Beijing: Science Press, 2015 (in Chinese))
    [34] Andersen ED, Andersen KD. The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm// High Performance Optimization, Springer, Boston, MA, 2000: 197-232
  • 加载中
计量
  • 文章访问数:  379
  • HTML全文浏览量:  64
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回