AN OPTIMAL GRASP PLANNER FOR SPACE ROBOTS USING CLAMPED B-SPLIE
-
摘要: 空间机械臂技术是未来实施在轨服务与维护任务的关键技术之一. 利用机械臂对空间非合作目标, 特别是翻滚目标的抓捕仍然存在巨大的挑战. 本文提出一种基于Clamped B样条的空间非合作目标抓捕策略方案. 在对非合作目标与空间机械臂运动学与动力学分析的基础上, 结合非合作目标被空间机械臂抓捕后的动静态对偶性分析, 构建抓捕后的力可操作度椭球作为抓捕策略设计的优化指标. 其次, 考虑目标的运动预测和空间机械臂的抓捕能力图谱构建, 确定空间机械臂应对目标的最优抓捕时机与抓捕终端状态. 基于Clamped B样条对空间机械臂各关节轨迹进行时间归一化参数描述, 并对抓捕过程中的机械臂关节角、速度、避撞、抓捕走廊等约束进行数学变换, 最终将抓捕策略转换为多约束、多目标的非线性优化问题, 利用自适应惯性权重的粒子群优化算法进行求解. 将所设计的抓捕策略应用于空间七自由度运动学冗余机械臂, 实现了对空间中翻滚目标的成功捕获, 验证了所提抓捕策略的可行性与有效性.
-
关键词:
- 抓捕策略 /
- Clamped B样条 /
- 空间机械臂 /
- 抓捕能力图谱
Abstract: Space manipulator is one of the key technologies to carry out on-orbit servicing and maintenance missions in the future. Until now, it is still a vast challenging mission to capture a non-cooperative target satellite by using a space robot, especially when the motion of the target satellite is tumbling. How to design a feasible and optimal grasping strategy is very important for the successfully capturing of non-cooperative target. Based on the concept of the Clamped B Spline, this paper investigates an optimal grasp planner for a kinematically redundant space manipulator to capture an arbitrarily rotating target, such as space debris, dysfunctional satellites, etc. The kinematics and dynamics of the space robotic system and non-cooperative target in pre- and post-capture phases are firstly introduced as the foundation for designing the grasp planner. With consideration of the kineto-statics duality of the non-cooperative target captured by a space robot, the concept of the force manipulability ellipsoid was derived and employed as an optimization index in the following grasp planning strategy design. Subsequently, the space robotic optimal grasping time and the target's terminal motion states are determined with consideration of the robotic capability map, the target motion prediction and the grasping direction of the space robotic end-effector. Furthermore, the joint trajectories are parameterized with time normalization using the clamped B-spline curves. The grasp planner of the space robot is then transformed as a multi-constraint, multi-objective nonlinear optimization issue with consideration of the space robotic joint angle, velocity, collision avoidance and end-effector's grasping cone limits, and solved by a constrained particle swarm optimization algorithm with adaptive inertia parameters. The designed grasp planning strategy is applied to a seven degree-of-freedom kinematically redundant manipulator mounted on a free-floating spacecraft base, and the successful capturing of a tumbling target satellite in space is realized. Simulation results are presented and demonstrated the feasibility and effectiveness of the proposed method.-
Keywords:
- grasp planner /
- clamped B spline /
- space manipulator /
- capability map
-
-
[1] Hirzinger G, Brunner B, Dietrich J, et al. ROTEX--The first remotely controlled robot in space//Proceedings of the IEEE Conference on Robotics and Automation, San Diego, USA, 1994, 2604-2611 [2] Inaba N, Oda M. Autonomous satellite capture by a space robot//Proceedings of the IEEE Conference on Robotics and Automation, San Francisco, USA, 2000, 1169-1174 [3] Ogilvie A, Allport J, Hannah M, et al. Autonomous satellite servicing using the orbital express demonstration manipulator system//Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, USA, 2008, 25-29 [4] Rekleitis I, Martin E, Rouleau G. et al. Autonomous capture of a tumbling satellite. Journal of Field Robot, 2007,23:275-296 [5] Torres MA, Dubowsky S. Minimizing spacecraft attitude disturbances in space manipulator systems. Journal of Guidance, Control, and Dynamics, 1992,15:1010-1017 [6] Yoshida K, Hashizume K, Abiko S. Zeros reaction maneuver: flight validation with ETS-VII space robot and extension to kinematically redundant arm//Proceedings of the IEEE Conference on Robotics and Automation, Seoul, Korea, 2001, 441-446 [7] Nguyen-Huynh T, Sharf I. Adaptive reactionless motion for space manipulator when capturing an unknown tumbling target//Proceedings of the IEEE Conference on Robotics and Automation, Shanghai, China, 2011, 4202-4207 [8] Wang MM, Luo JJ, Fang J. et al. Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm. Advances in Space Research, 2018,61:1525-1536 [9] Huang PF, Xu YS, Liang B. Dynamic balance control of multi-arm free-floating space robots. International Journal of Advanced Robotic Systems, 2005,2(2):117-124 [10] Wang MM, Luo JJ, Walter U. Novel synthesis method for minimizing attitude disturbance of the free-floating space robots. Journal of Guidance, Control, and Dynamics, 2016,39(3):695-704 [11] Shah S, Sharf I, Misra A. Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system//AIAA Conference on Guidance, Navigation, and Control, Boston, USA, 2013 [12] Xu WF, Peng JQ, Liang B. et al. Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Transaction on Aerospace and Electronic Systems, 2016,52(1):85-98 [13] Lampariello R, Tuong D, Castellini C, et al. Trajectory planning for optimal robot catching in real-time//Proceedings of the IEEE Conference on Robotics and Automation, Shanghai, China, 2011, 3719-3726 [14] Wang MM, Luo JJ, Walter U. Trajectory planning of free-floating space robot using particle swarm optimization (PSO). Acta Astronautica, 2015,112:77-88 [15] 介党阳, 陆浩然, 吴晗玲 等. 空间大型机械臂系统载运轨迹优化方法. 航空学报, 2018,39(S1):111-119 (Jie Dangyang, Lu Haoran, Wu Hanling, et al. Transporting trajectory optimization method for large space manipulator system. Acta Aeronautica et Astronautica Sinica. 2018,39(S1):111-119 (in Chinese))
[16] Yamazaki K, Tomono M, Tsubouchi T, et al. A grasp planning for picking up an unknown object for a mobile manipulator//Proceedings of the IEEE Conference on Robotics and Automation, Orlando, USA, 2016, 2143-2149 [17] Diankov R, Ratliff N, Ferguson D, et al. BiSpace planning: concurrent multi-space exploration//Robotics: Science and Systems, Zurich, Switzerland, 2008 [18] 余敏, 罗建军, 王明明 等. 一种改进 RRT* 结合四次样条的协调路径规划方法. 力学学报, 2020,52(4):1024-1034 (Yu Min, Luo Jianjun, Wang Mingming, et al. Coordinated path planning by integrated improved RRT* and quartic spline. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(4):1024-1034 (in Chinese))
[19] Lin Y, Sun Y. Robot grasp planning based on demonstrated grasp strategies. International Journal of Robotics Research, 2015,34(1):26-42 [20] Yoshida K, Dimitrov D, Nakanishi H. On the capture of tumbling satellite by a space robot//Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems, Beijing, China, 2006, 4127-4132 [21] Aghili F. A prediction and motion-planning scheme for visually guided robotic capturing of free-floating tumbling objects with uncertain dynamics, IEEE Transactions on Robotics, 2012,28(3):634-649 [22] 郭闻昊, 王天舒. 空间机器人抓捕目标星碰撞前构型优化. 宇航学报, 2015,36(4):390-396 (Guo Wenhao, Wang Tianshu. Pre-impact configuration optimization for a space robot capturing target satellite. Journal of Astronautics. 2015,36(4):390-396 (in Chinese))
[23] 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019,51(4):1156-1169 (Zhu An, Chen Li. Mechanical simulation and full order sliding collision avoidance complaint control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(4):1156-1169 (in Chinese))
[24] 艾海平, 陈力. 基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制. 力学学报, 2020,52(4):975-984 (Ai Haiping, Chen Li. Buffer and compliant dynamic surface control of space robot capturing satellite based on compliant mechanism. Chinese Journal of Theoretical and Applied Mechanics. 2020,52(4):975-984 (in Chinese))
[25] 王明明, 罗建军, 王嘉文 等. 空间机器人捕获非合作目标后的消旋策略及阻抗控制. 机器人, 2018,40(5):750-761 (Wang Mingming, Luo Jianjun, Wang Jiawen, et al. Detumbling strategy and impedance control for space robot after capturing an uncooperative target. Robot, 2018,40(5):750-761 (in Chinese))
[26] 蓝启杰, 刘宜成, 张涛. 基于位姿反馈的三臂空间机器人抓捕轨迹规划. 中国机械工程, 2018,29(20):2495-2501 (Lan Qijie, Liu Yicheng, Zhang Tao. Trajectory planning of a three-arm space robot based on pose feedback. China Mechanical Engineering. 2018,29(20):2495-2501 (in Chinese))
[27] 彭键清. 空间翻滚目标的位姿测量及其双臂捕获机器人的轨迹规划. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2018 (Peng Jianqing. Pose measurement of a space tumbling target and trajectory planning of dual-arm capture robot. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2018 (in Chinese))
[28] 程靖, 陈力. 空间机器人双臂捕获卫星后辅助对接操作控制仿真. 系统仿真学报, 2018,30(9):3429-3436 (Cheng Jing, Chen Li. Auxiliary docking maneuver control simulation of dual-arm space manipulator after capturing operation. Journal of System Simulation. 2018,30(09):3429-3436 (in Chinese))
[29] Umetani Y, Yoshida K. Resolved motion rate control of space manipulators with generalized jacobian matrix. IEEE Transactions on Robotics and Automation, 1989,5(3):303-314 [30] Porges O, Lampariello R, Artigas J, et al. Reachability and dexterity: Analysis and application for space robotics//Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, Netherlands, 2015 [31] Helwig S. Particle swarms for constrained optimization. [PhD Thesis]. Erlangen, Germany: Erlangen University, 2010 [32] Wang MM, Luo JJ, Yuan JJ. et al. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization. Acta Astronautica, 2018,146:259-272 -
期刊类型引用(4)
1. 金鑫,吴建军,沈南燕. 基于数字孪生技术的推手齿轮箱实时动力学计算. 精密制造与自动化. 2024(02): 6-11 . 百度学术
2. 贺道坤,李明. 机械臂气动关节柔性抓取操控. 机械科学与技术. 2023(02): 198-202 . 百度学术
3. 纪娜. 基于Android的工业移动机器人远程控制终端软件设计. 自动化技术与应用. 2022(11): 27-31 . 百度学术
4. 许若男,罗建军,王明明. 基于能力评估的空间翻滚目标抓捕策略优化. 力学学报. 2021(10): 2841-2852 . 本站查看
其他类型引用(4)
计量
- 文章访问数: 1730
- HTML全文浏览量: 550
- PDF下载量: 93
- 被引次数: 8