EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机动目标滤波估计的航天器主动规避策略

李皓皓 张进 罗亚中

李皓皓, 张进, 罗亚中. 基于机动目标滤波估计的航天器主动规避策略[J]. 力学学报, 2020, 52(6): 1560-1568. doi: 10.6052/0459-1879-20-113
引用本文: 李皓皓, 张进, 罗亚中. 基于机动目标滤波估计的航天器主动规避策略[J]. 力学学报, 2020, 52(6): 1560-1568. doi: 10.6052/0459-1879-20-113
Li Haohao, Zhang Jin, Luo Yazhong. SPACECRAFT EVASION STRATEGY USING ACTIVE MANEUVERS BASED ON MANEUVERING-TARGET ACCELERATION ESTIMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1560-1568. doi: 10.6052/0459-1879-20-113
Citation: Li Haohao, Zhang Jin, Luo Yazhong. SPACECRAFT EVASION STRATEGY USING ACTIVE MANEUVERS BASED ON MANEUVERING-TARGET ACCELERATION ESTIMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1560-1568. doi: 10.6052/0459-1879-20-113

基于机动目标滤波估计的航天器主动规避策略

doi: 10.6052/0459-1879-20-113
基金项目: 1) 国家自然科学基金资助项目(11572345)
详细信息
    作者简介:

    2) 张进, 副教授, 主要研究方向: 航天飞行任务规划. E-mail: zhangjin@nudt.edu.cn

    通讯作者:

    张进

  • 中图分类号: V448.21

SPACECRAFT EVASION STRATEGY USING ACTIVE MANEUVERS BASED ON MANEUVERING-TARGET ACCELERATION ESTIMATION

  • 摘要: 随着空间操控技术的发展, 航天器在轨安全问题日益受到重视.具有主动机动能力的航天器对目标航天器的自主接近严重威胁航天器的在轨安全.航天器近距离追逃博弈时,相对位置、速度、加速度等状态获取是追逃双方博弈策略形成的基础.本文在追逃双方信息获取不完全的情况下,提出了基于机动目标滤波估计与最大化视线偏转率的主动规避逃脱策略.追逃双方航天器基于当前统计模型滤波算法获得对方的相对位置、速度、加速度等导航信息.追踪航天器采用比例导引律自主接近逃逸航天器.逃逸航天器计算相对于追踪航天器的视线方向及视线偏转率,采用基于最大化视线偏转率的主动规避策略进行逃脱.对不同规避策略及不同工况进行仿真分析, 结果表明:逃逸航天器的机动能力达到追踪航天器的60%以上时,所提出的规避策略可有效规避追踪航天器的自主接近;规避策略对观测设备的测量精度和工作频率不敏感;规避效果与规避策略的响应时间有关, 逃逸航天器收到预警信息越早, 规避效果越好.

     

  • [1] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [1] ( Cao Dengqing, Bai Kunchao, Ding Hu, et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [2] 尹婷婷, 邓子辰, 胡伟鹏 等. 空间刚性杆--弹簧组合结构轨道、姿态耦合动力学分析. 力学学报, 2018,50(1):87-98
    [2] ( Yin Tingting, Deng Zichen, Hu Weipeng, et al. Dynamic modelling and simulation of orbit and attitude coupling problems for structure combined of spatial rigid rods and spring. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):87-98 (in Chinese))
    [3] 王恩美, 邬树楠, 吴志刚. 在轨组装空间结构面向主动控制的动力学建模. 力学学报, 2020,52(3):805-816
    [3] ( Wang Enmei, Wu Shunan, Wu Zhigang. Active-control-oriented dynamic modelling for on-orbit assembly space structure. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):805-816 (in Chinese))
    [4] 敬忠良. 航天器自主操作的测量与控制. 北京: 中国宇航出版社, 2011
    [4] ( Jing Zhongliang. Measurement and Control of Autonomous Operation of Spacecraft. Beijing: China Aerospace Press, 2011 (in Chinese))
    [5] Li XR, Jilkov VP. Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 2003,39(4):1333-1364
    [6] Singer RA. Estimating optimal tracking filter performance for manned maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 1970(4):473-483
    [7] 周宏仁, 敬忠良, 王培德 等. 机动目标跟踪. 北京: 国防工业出版社, 1991
    [7] ( Zhou Hongren, Jin Zhongliang, Wang Peide, et al. Tracking of Maneuvering Target. Beijing: National Defense Industry Press, 1991 (in Chinese))
    [8] 李菲, 潘平俊. 机动目标模型的研究进展. 火力与指挥控制, 2007,32(10):17-21
    [8] ( Li Fei, Pan Pingjun. The research and progress of dynamic models for maneuvering target tracking. Fire Control and Command Control, 2007,32(10):17-21 (in Chinese))
    [9] Zhou WM, Wang H, Tang GJ, et al. Inverse simulation system for manual-controlled rendezvous and docking based on artificial neural network. Advances in Space Research, 2016,58(6):938-949
    [10] 姚党鼐, 王振国. 航天器在轨防碰撞自主规避策略. 国防科技大学学报, 2012,34(6):100-110
    [10] ( Yao Dingnai, Wang Zhenguo. Active collision avoidance maneuver strategy for on-orbit spacecraft. Journal of National University of Defense Technology, 2012,34(6):100-110 (in Chinese))
    [11] Bombardelli C. Analytical formulation of impulsive collision avoidance dynamics. Celestial Mechanics and Dynamical Astronomy, 2013,118(2):99-114
    [12] Wang S, Schaub H. Spacecraft collision avoidance using coulomb forces with separation distance and rate feedback. Journal of Guidance, Control, and Dynamics, 2012,31(3):740-750
    [13] 郑重, 宋申民. 考虑避免碰撞的编队卫星自适应协同控制. 航空学报, 2013,34(8):1934-1943
    [13] ( Zheng Zhong, Song Shenming. Adaptive coordination control of satellites within formation considering collision avoidance. Acta Aeronautica Et Astronautica Sinica, 2013,34(8):1934-1943 (in Chinese))
    [14] 罗亚中, 李振瑜, 祝海. 航天器轨道追逃微分对策研究综述. 中国科学: 技术科学, 2020, doi: 10.1360/SST-2019-0174
    [14] ( Luo Yazhong, Li Zhenyu, Zhu Hai. Survey on spacecraft orbital pursuit-evasion differential games. Science China Technological Sciences, doi: 10.1360/SST-2019-0174 (in Chinese))
    [15] 张秋华, 孙松涛, 谌颖 等. 时间固定的两航天器追逃策略及数值求解. 宇航学报, 2014,35(5):537-544
    [15] ( Zhang Qiuhua, Sun Songtao, Chen Yin, et al. Strategy and numerical solution of pursuit-evasion with fixed duration for two spacecraft. Journal of Astronautics, 2014,35(5):537-544 (in Chinese))
    [16] 郝志伟, 孙松涛, 张秋华 等. 半直接配点法在航天器追逃问题求解中的应用. 宇航学报, 2019,40(6):628-635
    [16] ( Hao Zhiwei, Sun Songtao, Zhang Qiuhua, et al. Application of semi-direct collocation method for solving pursuit-evasion problems of spacecraft. Journal of Astronautics, 2019 40(6):628-635 (in Chinese))
    [17] 刘源, 李玉玲, 郝勇 等. 航天器三维空间追逃问题研究. 系统工程与电子技术, 2018,40(4):868-877
    [17] ( Liu Yuan, Li Yuling, Hao Yong, et al. Research on three dimensional space pursuit-evasion of spacecraft. Systems Engineering & Electronics, 2018,40(4):868-877 (in Chinese))
    [18] Yu DT, Luo YZ, Jiang ZC, et al. Multi-objective evolutionary optimization of evasive maneuvers including observability performance// 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, May 25-28, 2015
    [19] 于大腾, 王华, 周晚萌. 考虑空间几何关系的反交会规避机动方法. 国防科技大学学报, 2016,38(6):89-94
    [19] ( Yu Dateng, Wang Hua, Zhou Wanmeng. Anti-rendezvous evasive maneuver method considering space geometrical relationship. Journal of National University of Defense Technology, 2016,38(6):89-94 (in Chinese))
    [20] Shen HX, Casalino L. Revisit of the three-dimensional orbital pursuit-evasion game. Journal of Guidance, Control, and Dynamics, 2018,41(8):1823-1831
    [21] Li Z, Zhu H, Yang Z, et al. A dimension-reduction solution of free-time differential games for spacecraft pursuit-evasion. Acta Astronautica, 2019: 201-210
    [22] Ye D, Shi MM, Sun ZW. Satellite proximate interception vector guidance based on differential games. Chinese Journal Aeronautic, 2018,31:1352-1361
    [23] Weiss M, Shima T. Minimum effort pursuit/evasion guidance with specified miss distance. Journal of Guidance, Control, and Dynamics, 2016,39(5):1069-1079
    [24] Weiss M, Shima T. Minimum effort intercept and evasion guidance algorithms for active aircraft defense. Journal of Guidance, Control, and Dynamics, 2016,39(10):2297-2311
    [25] 祝海. 基于微分对策理论的航天器追逃博弈研究. [硕士论文]. 长沙: 国防科学技术大学, 2017
    [25] ( Zhu Hai. Spacecraft orbital pursuit-evasion based on differential game theory. [Master Thesis]. Changsha: National University of Defense Technology, 2017 (in Chinese))
    [26] 陈文胜, 陈新海. 比例导引法在航天器交会中的应用. 西北工业大学学报, 1994,12(1):31-36
    [26] ( Chen Wensheng, Chen Xinhai. Application of proportional navigation to rendezvous problems. Journal of Northwestern Polytechnical University, 1994,12(1):31-36 (in Chinese))
    [27] 李九人, 李海阳, 陈磊 等. 基于比例导引的空间交会寻的段飞行任务设计. 飞行力学, 2009,27(4):58-61
    [27] ( Li Jiuren, Li Haiyang, Chen Lei, et al. Homing mission design of space rendezvous based on proportional guidance. Flight Dynamics, 2009,27(4):58-61 (in Chinese))
    [28] Li KB, Liang YG, Su WS, et al. Performance of 3D TPN against true-arbitrarily maneuvering target for exoatmospheric interception. Science China Technological Sciences, 2018,61:1161-1174
    [29] 黎克波. 拦截机动目标的制导律研究. [博士论文]. 长沙: 国防科学技术大学, 2016
    [29] ( Li Kebo. Research on guidance laws for intercepting maneuvering targets. [PhD thesis]. Changsha: National University of Defense Technology, 2016 (in Chinese))
  • 加载中
计量
  • 文章访问数:  829
  • HTML全文浏览量:  103
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 刊出日期:  2020-12-10

目录

    /

    返回文章
    返回